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1. Introduction

Modern society is built on the transformation of heat into 
mechanical work. The task of perfecting the heat engine 
was made possible by theoretical insights into fundamental 
bounds on its efficiency. By calculating the maximum amount 
of work extractable from a given quantity of heat by an engine 
operating between two thermal reservoirs of fixed temper
ature, Sadi Carnot was able to show that stateoftheart steam 
engines in 1824 could still be significantly improved [17]. By 

determining the kinds of processes that saturate the bound, 
he was able to offer practical suggestions for making these 
improvements.

Biotechnology and biologically inspired design have 
opened up new engineering challenges that push the boundaries  
of thermodynamics. Living systems use heat to accomplish 
a wide variety of tasks in addition to performing mechanical 
work, such as replicating complex structures with high fidelity 
[52, 53, 62], maintaining robust clocks [6, 16], and sensing the 
state of their environment [42, 44, 66]. Most of these processes 
are intrinsically nonequilibrium, in the sense that they cannot 
be represented even approximately as a sequence of states of 
thermal equilibrium. Since they never approach the limit of 
zero entropy change, such processes are left unconstrained by 
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classical thermodynamic theory. Similar issues arise in con
temporary soft matter physics, particularly with the advent 
of active matter systems that constantly transduce chemical 
energy into mechanical force on microscopic scales [47, 57, 
65].

In the 1950’s–1970’s, the theory of linear irreversible ther
modynamics was developed to analyze chemical reactions and 
various transport problems near thermal equilibrium from a 
thermodynamic perspective (see [23] for a thorough introduc
tion). Many hoped that these results could be developed into 
a general theory of nonequilibrium thermodynamics, capable 
of making universal claims analogous to the Carnot bound on 
engine efficiency [55, 61]. Ilya Prigogine’s principle of mini
mum entropy production initially seemed like a promising 
starting point for constructing a more comprehensive theory, 
but counterexamples were soon identified that revealed its 
restricted range of validity (see [61, p 100ff.], [43]).

The past twenty years have seen a resurgence of inter
est in nonequilibrium thermodynamics, based on advances 
in the theory of stochastic processes and in their thermody
namic analysis. Stochastic thermodynamics has matured into 
a systematic theory of nonequilibrium processes, in which the 
analogies to thermal equilibrium that Prigogine and others 
were searching for can be mathematically defined [71, 76]. 
But these general results carry their own limits: far from equi
librium, they demand precise knowledge of the probability 
distributions of the relevant quantities, which are often exper
imentally inaccessible [37], or they invoke a dual’ dynamics 
that lacks any direct physical interpretation [68]. This review 
aims to present a selection of central results from contempo
rary nonequilibrium thermodynamics in such a way that the 
power of each claim for making physical predictions can be 
clearly assessed.

After setting up our notation and theoretical framework in 
section  2, we proceed in section  3 to consider the immedi
ate consequences of imposing a consistent thermodynamic 
interpretation on a stochastic model. These include fluctua
tion theorems, the role of Shannon entropy, and the relation
ship of entropy to transition rate ratios at a coarsegrained 
level. We illustrate these ideas and their potential applications 
by reviewing a recent effort to obtain general design princi
ples for nonequilibrium selfassembly from thermodynamic 
considerations.

The practical utility of the results of section 3 is limited 
by their dependence on information about exponentially rare 
fluctuations, which becomes important far from equilibrium. 
Recent advances in the study of such fluctuations in the field 
of large deviation theory have significantly pushed back this 
limit. In section  4, we discuss the assumptions and conse
quences of a particularly powerful result that relates these rare 
fluctuations to the small fluctuations that could actually be 
observed in an experiment [29, 59]. This theorem leads to a 
‘thermodynamic uncertainty relation’, which places a limit on 
the allowed dynamical precision of a nonequilibrium process 
based on its rate of entropy production [5].

If we now imagine perturbing a driven system—compress
ing an active material, for instance—many analogies to clas
sical thermodynamics suggest themselves. In equilibrium, we 

could have computed the force resisting the perturbation by 
taking a derivative of free energy; we could have predicted 
typical values of observables by minimizing the free energy; 
and we could have constrained the minimum work required to 
change they state of the system with the difference between 
initial and final free energies. In section  5, we discuss the 
extent to which these three kinds of thermodynamic predic
tions can be generalized to transitions between nonequilib
rium steady states.

We believe that this selection of topics will provide a 
helpful unifying perspective on some of the most important 
themes in contemporary nonequilibrium thermodynamics, 
particularly for readers interested in biophysical or softmatter 
applications. But a number of current lines of inquiry have 
been left outside the scope of this review. Stochastic thermo
dynamics has shed new light on the original thermodynamic 
problem of heat engine performance (see [12, 63]), consoli
dating the considerable progress made in finitetime ther
modynamics throughout the second half of the 20th century  
[1, 56]. This new perspective has also helped elucidate the 
nature of fluctuationresponse relations, showing how the tra
ditional formulations can be generalized to farfromequilib
rium scenarios [4, 48]. A comprehensive review of stochastic 
thermodynamics from 2012 summarizes the development of 
both of these themes up through that year [71].

2. Microscopic reversibility connects entropy  
to dynamics

In thermal equilibrium, the principle of detailed balance 
relates transition rates between system states x to the ener
gies of those states U(x), by requiring that all probability flux 
vanish in the Boltzmann distribution. We can express this 
requirement in terms of the probability that the system passes 
through a continuous sequence of states xt  during a window 
of duration τ , starting from state x0 at time t = 0. We denote 
the whole trajectory by xτ

0 , and the timereversed version of 
this trajectory by ̂xτ

0 . At time t after initialization, a system fol
lowing the timereversed trajectory will be found in state x∗

τ−t, 
where x∗ is the state obtained from x by reversing the signs of 
all momentum degrees of freedom that may be contained in 
that vector.

Detailed balance requires that the ratio of forward and 
reverse trajectory probabilities p(xτ0 |x0) and p(x̂τ0 |x∗τ ) condi
tioned on their respective initial states must be equal to the 
ratio of Boltzmann weights:

p(x̂τ0 |x∗τ )
p(xτ0 |x0)

= e
1

kBT [U(xτ )−U(x0)]. (1)

The cornerstone of contemporary nonequilibrium statistical 
mechanics is a generalization of equation (1) known as ‘local 
detailed balance’ or ‘microscopic reversibility’, which applies 
to driven systems arbitrarily far from thermal equilibrium. Since 
this principle is so fundamental, it is important to understand 
its physical basis and its range of validity before proceeding to 
more specific results. In this section, we explain how it follows 
from the timereversal symmetry of the microscopic dynamics.

Rep. Prog. Phys. 81 (2018) 016601
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2.1. Stochastic processes from classical mechanics

Consider an isolated chunk of classical matter with 
Hamiltonian Htot, whose state is described by a set of N  coor
dinates qi with conjugate momenta pi. The dynamics are given 
by Hamilton’s equations

q̇i =
∂Htot

∂pi

ṗi = −∂Htot

∂qi
.

 (2)

We will keep track of some subset of the N  degrees of free
dom, which we call the ‘system’ and denote by x, and refer 
to the rest of the degrees of freedom y as the ‘environment’. 
We can now split the Hamiltonian into three parts: one that 
depends on the system degrees of freedom alone, one that 
depends on the environment alone, and one that couples the 
two sets together:

Htot(x, y, t) = Hsys(x,λt) + Henv(y) + hint(x, y). (3)

We have allowed for an explicit timedependence in the 
Hamiltonian via a control parameter λ (e.g. the position of the 
piston in the classic example of gas compression), which can 
be used to do work on the system according to a predefined 
protocol λτ

0 and drive it out of equilibrium.
We now fix the initial condition of the system x0, and 

choose a random initial condition y0 for the environment from 
a uniform distribution over states with total energy Htot = U. 
Since the dynamics of the whole setup are deterministic, the 
trajectory xτ

0  is fully determined by this initial random choice. 
We can collect all the y0’s that produce trajectories within a 
small window around a given xτ

0 , and denote the phase space 
volume occupied by this set of states as Ω(xτ

0 ). The proba
bility of observing a trajectory in the window is then given 
by the ratio of this volume to the total phase space volume 
Ω(U − Hsys(x0,λ0)) available to the environment at time 
t = 0:

p(xτ0 |x0,λτ
0 ) =

Ω(xτ0 )
Ω(U − Hsys(x0,λ0))

. (4)

The energy of the environment changes over the course 
of the trajectory, as heat flows in and out of the system. At 
the end of the trajectory, it is equal to E + W − Hsys(xτ ,λτ ), 
where the work W  done by manipulation of λ is

W =

∫ τ

0

∂Hsys(xt,λt)

∂λ
λ̇tdt. (5)

Now we can compute the probability of seeing the reverse tra
jectory x̂τ

0  if we reverse the momenta, choose the environment 
conditions from this new energy surface, and run the protocol 
λt in reverse:

p(x̂τ0 |x∗
τ , λ̂τ

0 ) =
Ω∗(x̂τ

0 )

Ω(U + W − Hsys(xτ ,λτ ))
. (6)

As illustrated in figure  1, the timereversibility of the 
Hamiltonian dynamics (2) can be expressed as the statement

Ω(xτ
0 ) = Ω∗(x̂τ0 ). (7)

This relation expresses the fact that every trajectory (xτ0 , yτ0 ) 
satisfying the equations of motion (2) has a reverse trajectory 
(x̂τ0 , ŷτ

0 ) that also satisfies these equations. (It also assumes 
that phase space volumes Ω =

∫ ∏
i dpi dqi  are measured 

with the Liouville measure 
∏

i dpi dqi, which is conserved by 
the equations of motion.) Note that equation (7) remains true 
even in the presence of magnetic fields, as long as the signs 
of these fields are reversed for the purposes of calculating 
Ω∗(x̂τ0 ).

Figure 1. Timereversal symmetry requires that the environmental 
phase space volumes giving rise to forward and reverse trajectories 
are identical. The planes represent the phase space of the 
environment, and the tubes represent the sets of environmental 
trajectories compatible with a given system trajectory xτ

0  and its 
timereverse x̂τ

0 , respectively. The conservation of the Liouville 
measure implies that the beginning and end of the tube occupy the 
same phase space volume, and timereversal symmetry requires that 
the initial conditions for the reverse tube are simply the momentum
reversed versions of the final conditions for the forward tube.

Rep. Prog. Phys. 81 (2018) 016601
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Combining equations (4), (6) and (7) leads immediately to

p(x̂τ0 |x∗τ , λ̂τ
0 )

p(xτ0 |x0,λτ
0 )

=
Ω(U − Hsys(x0,λ0))

Ω(U + W − Hsys(xτ ,λτ ))
. (8)

We can now use Boltzmann’s microcanonical definition of 
entropy to express the right hand side in terms of the thermo
dynamic entropy Se = kB lnΩ of the environment:

p(x̂τ0 |x∗τ , λ̂τ
0 )

p(xτ0 |x0,λτ
0 )

= e−∆Se/kB . (9)

Equation (9) is known as the ‘microscopic reversibility 
relation’, since it encodes the timereversibility of the full 
microscopic dynamics in a coarsegrained stochastic dynam
ics [19, 27].

2.2. Entropy and heat

The microscopic reversibility relation (9) has a remarkably 
wide range of validity, although the above derivation has been 
made somewhat more restrictive for the sake of clarity and 
simplicity. In particular, we have assumed that the environ
ment is initialized in thermal equilibrium, so that the initial 
environmental states can be sampled from a uniform distribu
tion over a constantenergy surface. The microcanonical defi
nition of temperature 1/T = ∂S/∂U then yields

∆Se =
Q
T

 (10)

where Q = W −∆Hsys is the amount of energy added to the 
environment over the course of the given trajectory.

But the derivation can be straightforwardly generalized 
to the case where different sectors of the environment are 
initially equilibrated separately with different temperatures 
T(α) and are brought into contact with the system at time 
t = 0. The result also remains valid when particle exchange 
between system and environment is allowed, although this is 
more complicated to set up notationally (see [39] for deriva
tion of a related expression allowing for particle exchange). 
If we include these possibilities, illustrated in figure 2, we 
obtain a more general expression for the entropy change 
(see [60]):

∆Se[xτ0 ] =
∑
α

1
T(α)

(
Q(α)[xτ0 ]−

∑
i

µ
(α)
i ∆n(α)

i [xτ0 ]

)

 (11)

where Q(α) and ∆n(α)i  are the heat and number of particles of 
type i, respectively, delivered to sectors of the environment 

with temperatures T(α) and chemical potentials µ(α)
i .

In subsequent sections, it will be convenient to split ∆Se 
into an equilibrium contribution −∆Hsys/T  and a nonequi
librium correction W  that can be thought of as a generalized 
work:

T∆Se = W −∆Hsys. (12)

The generalized work can be written explicitly as

W = W + T∆Se −
∑
α

Q(α), (13)

and reduces to the ordinary mechanical work W  performed 
through the control parameters λt in the case of an isothermal 
process with no particle exchange. This splitting highlights 
the fact that systems can be kept out of equilibrium by thermal 
or chemical ‘work’ even if all the control parameters λ are 
held constant. In such cases, the system relaxes to a nonequi
librium steady state (in the limit of infinitely large reservoirs), 
which will be the main subject of section 5.

Since the Schrödinger equation  is timereversible, a ver
sion of equation (9) can also been obtained for quantum sys
tems. In this case the system trajectory cannot be observed 
without interfering with the dynamics, however, and one has 
to consider the environment trajectory instead [21, 35]. The 
consequences of microscopic reversibility that we will dis
cuss in section 3 do not involve observation of fullydetailed 
system trajectories, and are thus easier to generalize to the 
quantum case [15].

In summary, the microscopic reversibility relation (9) 
depends on two basic assumptions: (a) the intrinsic dynamics 
of the system are time reversible, and (b) the environment is 
initialized in thermal equilibrium, or is partitioned into non
interacting sectors that are each separately initialized in ther
mal equilibrium.

2.3. Coarse-grained models

A nonequilibrium steady state can also be set up by other 
means, including stationary force fields with nonzero curl 
and externally imposed flow fields. Physically, all these forms 
of driving are ultimately reducible to the above framework. 
Experimental realizations of nonconservative force fields, for 
example, are actually created by rapidly varying some control 

Figure 2. Left: the N  degrees of freedom in a piece of isolated 
matter are partitioned into two sets, a system with microstate x and 
an environment with microstate y. The system is illustrated here as 
discrete particles, since we keep track of the full trajectories xτ

0 . The 
environment is a solid color, because we integrate it out to obtain 
an effective stochastic dynamics for x. Work can be done on the 
system by externally imposed variations in a set of parameters λt, 
which affect only the system part of the Hamiltonian Hsys. Right: 
we consider situations where the environment can be modeled as a 
set of ideal thermal and chemical reservoirs with temperatures T(α) 
and chemical potentials µ(α)

i .

Rep. Prog. Phys. 81 (2018) 016601
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parameters [11]. But it is convenient to model such a system 
by abstracting from the source of the flow field or effective 
force field, and these models can be numerically simulated 
without adding more information about the underlying oscil
lations or gradients.

Furthermore, many systems of interest in soft matter and 
biology consist of very small particles in aqueous solution. It 
is often a good approximation to let the momentum degrees of 
freedom and the microstate of the water molecules instantane
ously relax to thermal equilibrium, taking the spatial location 
of the particles of interest to fully specify the system state 
x. The dynamics of x are then described by an overdamped 
Langevin equation, which makes the particle’s velocity pro
portional to the applied force and includes a random force due 
to the hidden degrees of freedom (see [28, 71]).

Chemically driven systems are usually represented with a 
similar sort of coarsegrained dynamics, with ‘fast’ degrees of 
freedom rapidly reaching the Boltzmann distribution within a 
subset of microstates specified by ‘slow’ variables. The slow 
variables in a chemical system refer to discrete metastable 
states, which could contain a collection of many similar pro
tein conformations in the same free energy well, or specify the 
concentrations of several molecular species in a wellmixed 
volume.

These coarsegrained models are no longer guaranteed to 
satisfy equation (9), and it is necessary to directly verify that 
the equation does indeed hold under the natural definitions of 
heat and work in the model. This is straightforward for diffu
sion processes driven by nonconservative forces (see [68]) 
or by external flows [73], which satisfy (9) when the heat is 
obtained from the natural definition of work as force times 
distance and of energy as the integral of the conservative part 
of the force.

Chemical systems require more care. If the dynamics on 
the set of discrete states x is modeled as a Markovian sto
chastic process, and the assumption of separation of time
scales holds, one obtains a modified form of (9). The heat 
Q in equation (11) is replaced by the free energy difference 
−∆F  between the final and initial coarsegrained states. In 
general, this free energy is given by F(x) = −kBT ln Zx where 
Zx is the sum of the Boltzmann weight e−U/kBT  over all the 
hidden degrees of freedom within the coarsegrained state 
x [71]. When x is a vector of chemical concentrations in a 
wellmixed volume, the free energy contains a part due to the 
intrinsic properties of the molecule, and part due to the sum 
over the possible spatial configurations of particles within the 
volume. In this case, the contribution to the free energy from 
each chemical species is equivalent to a chemical potential 
µi = µ0,i + kBT ln ci [69].

In the limit of large system size, where the concentrations 
are naturally treated as continuous variables, chemical reac
tion dynamics are often modeled with a stochastic differential 
equation  known as the chemical Langevin equation  (CLE). 
Near equilibrium, the CLE still obeys equation (9). But once 
the free energy change per reaction becomes of order kBT , the 
ratio of reverse to forward trajectory probabilities no longer 
corresponds directly to any thermodynamic quantity [34].

3. Consequences of microscopic reversibility

The basic insights of equilibrium thermodynamics are founded 
on the Clausius relation

∆S � −Q
T

 (14)

which relates the change ∆S in the entropy of a system to the 
heat Q exhausted into an ideal thermal reservoir at temper
ature T . More generally, one can replace Q/T  by ∆Se, which 
could include contributions from particle exchange and mul
tiple thermal reservoirs.

The entropy of equilibrium thermodynamics is only defined 
for equilibrium states. To obtain thermodynamic constraints 
on transitions between nonequilibrium states, it is necessary 
to define a generalized entropy that still obeys equation (14). 
The Gibbs/Shannon entropy

S = −kB

∫
dx p(x) ln p(x) (15)

is naturally generalizable to nonequilibrium states, since it 
remains welldefined even when p(x) is not the Boltzmann dis
tribution. Schnakenberg argued in the 1970’s that equation (14) 
should hold for this choice of the entropy in a broad class of 
Markovian stochastic processes on a finite set of states [69].

In this section, we review how a generalized version of 
Schnakenberg’s result follows from microscopic reversibility (9), 
thus confirming that the Shannon entropy preserves the Clausius 
inequality away from thermal equilibrium. We then point out a 
further refinement that relates the average total entropy change 
to macroscopic irreversibility, placing a tighter constraint on 
processes that necessarily involve positive total entropy produc
tion. We end the section by discussing design principles for non
equilibrium selfassembly that can be derived from these results, 
and commenting on their range of applicability.

3.1. Fluctuation theorem for total entropy change

The full trajectories xτ
0  that appear in equation  (9) are usu

ally not directly observable. To obtain predictions from this 
symmetry, we need to integrate out the dependence on these 
microscopic details. As we will see, integrating equation (9) 
over all trajectories leads directly to an integral fluctuation 
theorem (FT). This theorem involves all moments of the prob
ability distribution for total entropy change. In this section, 
we will be concerned with the resulting inequality for the first 
moment, which is a form of the Clausius inequality. By retain
ing the information about fluctuations that is discarded in this 
derivation, one can obtain additional predictions, including 
the fluctuationdissipation theorem of classical linear response 
theory (see [20, chapter 5]).

Multiplying p(xτ0 |x0,λτ
0 ) by any normalized probabil

ity distribution p0(x0) generates a normalized distribution 
P(xτ0 |λτ

0 ) over the whole trajectory space. Likewise, multi
plying p(x̂τ0 |x∗τ , λ̂τ

0 ) by some pτ (xτ ) generates another nor
malized distribution P(x̂τ

0 |λ̂τ
0 ). It follows immediately from 

equation (9) and the normalization of these distributions that

Rep. Prog. Phys. 81 (2018) 016601
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〈e−
∆Se
kB

+ln
pτ (xτ )
p0(x0) 〉 = 1 (16)

where 〈F [xτ0 ]〉 =
∫
D[xτ

0 ]F [xτ0 ]P(xτ0 |λτ
0 ) is the average value 

of the trajectory functional F [xτ0 ] over the forward trajectory 
distribution P(xτ0 |λτ

0 ).
If pτ (xτ ) is chosen as the timeevolved version of p0(x0), 

then equation (16) can be written in the more suggestive form

〈e−
1

kB
(∆Se+∆s)〉 = 1 (17)

using the stochastic entropy

∆s = −kB ln pτ (xτ ) + kB ln p0(x0). (18)

The average of this quantity over the forward trajectory 
ensemble gives the change in Shannon entropy of the system 
over the course of its forward evolution:

〈∆s〉 = −kB

∫
dx pτ (xτ ) ln pτ (xτ ) + kB

∫
dx p0(x0) ln p0(x0).

 (19)
Equation (17) is known as the integral fluctuation theorem 
for the total entropy change, and was first obtained in 2005 
by Udo Seifert (who used it to justify the definition (18) of 
the stochastic entropy) [70]. This is a very powerful result, 
and almost everything we will discuss in the remainder of 
this review follows from it or from some closely related 
variant.

Using the fact that ex > 1 + x, we recover the Clausius 
inequality

〈∆s〉 � −〈∆Se〉. (20)

This confirms Schnakenberg’s thesis for any system obeying 
microscopic reversibility (9), including situations beyond the 
scope of his original paper where the dynamical rules change 
in time due to variations in a control parameter λt.

Equations (17) and (20) can be rewritten in terms of the 
thermodynamic work W  defined in equation (12), which will 
be particularly useful in section 5 when discussing transitions 
between nonequilibrium steady states. The fluctuation theo
rem becomes

〈e−
1

kBT (W−∆U+T∆s)〉 = 1, (21)

This reduces to the Jarzynski equality when the initial and 
final distributions are chosen as Boltzmann distributions, 
which turns U − Ts  into the equilibrium free energy F [36]. In 
general, this fluctuation theorem implies the isothermal form 
of the Clausius inequality:

〈W〉 � ∆F (22)

where the nonequilibrium free energy is

F = U − T〈s〉. (23)

3.2. Statistical irreversibility in macroscopic transitions

Our starting point in equation  (9) quantified the statistical 
irreversibility of a microscopic trajectory and related that 
quantity to the entropy change. By modifying a few steps in 
the above derivation of the integral fluctuation theorem, one 

can preserve more of this information during the integration 
over trajectories, bounding the entropy change with a posi
tive number that quantifies the irreversibility of a macroscopic 
transition [25, 30, 33, 38].

One way of doing this is to categorize the microstates 
according to some empirical criterion [25]. This partitions 
the phase space into regions that we label I, II, III, . . .. We can 
study the statistics of transitions between a pair of regions I 
and II by setting p0(x0) = 0 everywhere outside of region I 
and pτ (xτ ) = 0 everywhere outside of region II. For simplic
ity, we will require the distributions within each region to sat
isfy p(x∗) = p(x).

The choice of p0(x0) is not compatible with our original 
derivation of the fluctuation theorem (17), which assumes 
that it is everywhere nonzero. But we can recover a sensible 
expression if we restrict our domain of integration to trajecto
ries that begin in I and end in II [10, 75]. This yields:

〈e−(∆Se+∆s)/kB〉I→II = eln
π(II→I)
π(I→II) (24)

where π(I → II) is the normalization of the trajectory distri
bution over the restricted domain

π(I → II) =
∫

I→II
D[xτ0 ]p0(x0)p(xτ0 |x0,λτ

0 ) (25)

and gives the total probability of arriving in II after time τ  
given that the system started in I.

The inequality ex � 1 + x then gives [25]:

〈∆s〉I→II + 〈∆Se〉I→II � −kB ln
π(II → I)
π(I → II)

. (26)

This is a tighter version of the Clausius inequality (20) for 
the case where π(I → II) > π(II → I). Generating internal 
order with a negative 〈∆s〉 requires dissipating at least the 
same amount of entropy into the environment, but this mini
mum can only be achieved when the system is just as likely to 
return back to I as it was to arrive in II from I.

In equation (19) of the previous section, we noted that 〈∆s〉 
is simply the change in the Shannon entropy of the distribu
tion over states of the system. The restricted average appear
ing in equation (26), however, has a more subtle interpretation. 
Using Bayes’ rule, we can express this quantity in terms of the 
conditional distribution p0(x0| → II) of finding the system in 
x0 at time 0 given that it ends up in II at time τ :

〈∆s〉I→II = −kB

∫

II
dx pτ (xτ ) ln pτ (xτ ) + kB

∫

I
dx p0(x0| → II) ln p0(x0).

 (27)

The first term on the right hand side is the ordinary Shannon 
entropy of the final state, but the second term is a crossentropy 
between the actual initial distribution and the new distribu
tion conditioned on the final macrostate. The thermodynamic 
interpretation of 〈∆s〉I→II as a change in internal entropy 
requires the additional assumption that the macrostate dynam
ics on the timescale of interest are effectively Markovian, so 
that the probability of a transition from I to II in time τ  is 
independent of the exact initial microstate within I.

For a macroscopic system, even down to the level of a single 
biological cell, the relative probability of the reverse trans ition 
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π(II → I)/π(I → II) quickly becomes astronomically small. 
If I represents the state with a single bacterium on an agar 
plate, and II is the state with two bacteria, then the probability 
of the transition I to II in twenty minutes can be close to 1, 
but the probability of the reverse transition II → I has been 
estimated at exp(−1011) [25]. Even though this number is so 
small, equation  (26) does not allow us to set it to zero: that 
would make the righthand side infinite, and require an infi
nite increase in entropy to maintain the inequality. The above 
estimate already sets the righthand side to 1011kB, which cor
responds to significant heat production at 300 K. For a liter of 
exponentially growing bacteria at a reasonable density of 106 
ml−1, half a Joule of heat per 30 min division cycle must be 
dissipated even in the absence of a decrease in internal entropy.

The original form of the Clausius relation (20) requires 
only that the heat dissipation compensate the change in inter
nal entropy, which has been estimated at −1010kB [25]. This 
suggests that most of the heat generated by the bacterium dur
ing division goes into providing statistical irreversibility to the 
many intermediate steps of the process, ensuring that the key 
reactions reliably proceed in the correct direction.

3.3. Application to self-assembly

We now turn to a set of systems that can be explicitly modeled, 
and provide a framework for obtaining design principles from 
equation  (26). Consider a selfassembly process in which par
ticles at chemical potential μ stick together to build up a struc
ture. We parameterize the state of the assembly by the number 
of particles N it contains and a set of intensive parameters ω that 
characterize the internal structure and composition. If μ is large 
enough, the structure will spontaneously grow at a finite rate. 
One can now examine the thermodynamic constraints on achiev
ing a given probability distribution over ω that differs from the 
Boltzmann distribution. Of particular interest are probability dis
tributions that increase the yield of a desired structure, as occurs 
in kinetic proofreading situations. This problem has been studied 
by several authors in the context of a simple but surprisingly rich 
model of templatebased replication [2, 3, 26, 67].

In this section, we use the tightened Clausius equality of 
equation (26) to rederive two recently obtained general ther
modynamic bounds on the dissipative cost of a nonBoltzmann 
distribution over ω [54]. We first note that the environmental 
entropy change over a transition from N to N +∆N is given 
by (11):

〈∆Se〉N→N+∆N =
µ∆N − 〈U〉N+∆N + 〈U〉N

T
 (28)

where 〈U〉N  is the average energy at fixed N in the growing 
structure.

To express the internal entropy change, we write the non
equilibrium distribution over microstates at fixed N in terms of 
an effective energy and free energy:

pN(ω) = e−
1

kBT [U
eff(N,ω)−Feff

N ] (29)

where Feff
N = −kBT ln

∑
ω e−

Ueff(N,ω)
kBT . Increasing the yield of a 

given structure ω is now equivalent to decreasing the relative 
Ueff(N,ω) for that ω. A few lines of algebra confirm that

〈s〉N = −kB

∑
ω

pN(ω) ln pN(ω) =
1
T

(
〈Ueff〉N − Feff

N

)
 (30)

in this parameterization.
In the large N limit, we expect that the intensive quantity 

ω should be an average of identically distributed independent 
random variables, and so the quantities Feff

N , FN , 〈Ueff〉N , 〈U〉N  
appearing in the exponent of the probability distributions 
should all become proportional to N (see [74]). This implies 
that

Feff
N+∆N − Feff

N

∆N
=

Feff
N

N
 (31)

and likewise for the other quantities.
In this case, equation (26) implies:

δµ− (〈U〉N − FN)− (〈Ueff〉N − Feff
N )

N
�

kBT
∆N

ln
π(N → N +∆N)

π(N +∆N → N)
 

(32)

where δµ ≡ µ− FN/N  is the excess chemical potential 
beyond what is required to keep N stationary in the equilib
rium ensemble. The left hand side has been rearranged so 
that the second term is the relative entropy between the actual 
distribution and the Boltzmann distribution (divided by N), 
which is always positive. Note that both averages are taken 
in the actual nonequilibrium distribution over microstates at 
fixed N.

As in the selfreplication example, making predictions 
using this result requires computing the reversal probabil
ity π(N +∆N → N). The first thing we can say about this 
quanti ty is that it is less than π(N → N +∆N) if ∆N  is 
positive and the structure is growing, which makes the right 
hand side of (32) greater than zero. The resulting inequality 
is one of the main conclusions of the paper by Nguyen and 
Vaikuntanthan [54], and extends an earlier result by the latter 
author on systems driven by externally varied parameters [75]. 
We have obtained it by a different route, which sheds light on 
the implications of the tightened Clausius inequality (26).

The top panel of figure 3, generated with data from [54], 
shows the minimum allowed δµ as a function of the character
istic size ξ of spatial correlations in a 1D filament assembled 
from two different monomer types. Eeff  for a given ξ is found 
by inverting the expression for ξ as a function of binding ener
gies at thermal equilibrium. Actual values of ξ obtained by 
growing the filament at finite δµ in simulation satisfy this 
weakened version of (32) that simply requires the lefthand 
side to be positive. But there is plenty of room to obtain a 
stronger bound that makes use of the right hand side.

The statistical irreversibility can be calculated explicitly in 
terms of a measurable drift velocity v and diffusion coefficient 
D if the dynamics of N are exactly described by a Gaussian 
driftdiffusion process. When inserted into the full expres
sion for the irreversibility, this yields a simple ratio of v to D 
regardless of the exact value of ∆N :

1
∆N

ln
π(N → N +∆N)

π(N +∆N → N)
=

v
D

. (33)
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Outside of this special scenario, we can still define a drift 
velocity and diffusion coefficient in the limit τ ,∆N → ∞, 
where the central limit theorem guarantees that small fluctua
tions in ∆N  become Gaussian. The statistics of these fluctua
tions about the mean value 〈∆N〉 = vτ  are fully determined 

by a diffusion coefficient D = 1
2 limτ→∞

var(∆N)
τ  where 

var(∆N) = 〈(∆N)2〉 − 〈∆N〉2 is the variance in ∆N  over 
the observation time τ . But the return probability becomes 
exponentially small in this limit, and involves an extremely 
rare large fluctuation that is not covered by the central limit 
theorem. As we will discuss at more length in section 4, recent 
results in the theory of rare fluctuations in stochastic processes 
imply that the Gaussian extrapolation always underestimates 
the true irreversibility:

1
∆N

ln
π(N → N +∆N)

π(N +∆N → N)
�

v
D

. (34)

This allows us to use the observable ratio v/D on the right 
hand side of the tightened inequality of equation (32), leading 
to the second main result in [54]:

δµ− (〈U〉N − FN)− (〈Ueff〉N − Feff
N )

N
�

v
D

. (35)

Returning to the top panel of figure  3, we see that this 
revised bound is significantly tighter. As in the selfreplication 
example, the energetic cost of the process is mainly determined 
by the statistical irreversibility. As the forcing increases from 
zero, all the chemical work initially goes into breaking time
reversal symmetry and biasing the process towards positive 

growth. Only as δµ increases beyond  ∼2kBT  does the internal 
entropy change begin to make a significant contribution.

Because the new bound can be saturated at finite distance 
from equilibrium, it can also be used to predict properties of 
the assembled structure without solving the dynamics. The 
bottom panel of figure  3, also made with data from [54], 
displays a prediction of the distribution over the fraction 
m = NB/N  of blue monomers in a 2D structure. This predic
tion was obtained by assuming that the nonequilibrium statis
tics of these fluctuations are still described by an equilibrium 
Ising model, but with a modified effective coupling energy. 
This effective coupling was chosen to make the distribution as 
different as possible from the actual equilibrium distribution 
while still satisfying the bound contained in equation  (35). 
The agreement between the prediction and the observed fluc
tuation spectrum is encouraging, and more work should be 
done to determine how far this procedure can be generalized. 
In principle, it could be a powerful way to obtain design prin
ciples for more complicated selfassembly scenarios that are 
challenging to simulate directly.

4. Dynamical precision and constraints on rare 
fluctuations

The microscopic reversibility relation (9) relates entropy 
changes to statistical irreversibility. Results derived from 
this relation thus tend to be most useful when some infor
mation is available about the probabilities of trajectories 
that reverse the system’s typical behavior. In the previous 

Figure 3. Plots generated using simulation data originally reported in [54], with permission from the authors. Red and blue monomers 
are maintained at identical chemical potentials μ in a supersaturated solution, but likecolored pairs of monomers bind more strongly than 
unlike pairs. Top: excess chemical potential required to reduce the typical size ξ of uniformly colored domains from its equilibrium value 
ξ = 50 in simulated assembly of a 1D filament. The black line is generated directly from simulation, while the blue line is obtained from 
equation (32) by requiring that the left hand side be nonnegative. The red line is the tighter bound of equation (35), which includes kinetic 
information about the relative size of fluctuations in assembly speed. Bottom: probability of observing a fraction m of blue monomers in a 
2D filament that has been growing for a long time. The black dots are direct simulation data. The red diamonds are generated by sampling 
from an Ising distribution with coupling strength chosen to saturate the constraint (35).

Rep. Prog. Phys. 81 (2018) 016601



Review

9

section we discussed the ideal case of perfectly Gaussian 
fluctuations, where the reversal probability is completely 
determined by drift and diffusion coefficients. But in gen
eral, computing the irreversibility requires evaluating the 
probabilities of exponentially rare events, which do not fall 
under the central limit theorem, and may bear no relation 
to the small fluctuations actually observed in a finitetime 
experiment.

For this reason, the power of nonequilibrium results like 
those of section 3 has been greatly augmented by advances 
in the mathematical theory of rare events in stochastic pro
cesses, known as large deviation theory (see [74] for an acces
sible introduction to this field). In this section, we present the 
recently discovered bound underlying the constraint on com
positional fluctuations of equation  (35) [29, 59]. This result 
also places constraints on dynamical design goals via a ‘ther
modynamic uncertainty relation’, which assigns an energetic 
cost to the suppression of fluctuations in the speed of a cyclic 
process [5]. We will end the section  by pointing out a few 
applications in this area.

4.1. Bound on rare current fluctuations

We illustrate the bound with a simple model: the ring of N 
discrete states shown in the first panel of figure 4. The system 
can hop from one state to either adjacent state in a Poisson 
process, whose rates for clockwise and counterclockwise hops 
w+ and w− are independent of the position along the ring. We 
can think of this as a highly simplified model of a biochemi
cal clock, in which a protein cycles through a set of internal 
conformations or phosphorylation states [6].

Our goal is to constrain the statistical irreversibility of the 
typical dynamics based on small, observable fluctuations. 
Specifically, we can consider the probability pτ ( j) that the 
system completes jτ  net cycles in the clockwise direction 
in time τ . In the limit of large τ , small fluctuations in j are 
described by a Gaussian distribution peaked at the typical 
value (see [77])

j̄ =
1
N
(w+ − w−) (36)

with variance

var( j) =
1

Nτ
(w+ + w−). (37)

We can quantify the statistical irreversibility with an expres
sion analogous to the right hand side of the tightened second 
law bound in equation  (32), by taking the logarithm of the 
ratio of the probabilities of observing the system’s typical 
behavior and its timereverse:

σ ≡ lim
τ→∞

1
τ
ln

pτ ( j̄)
pτ (−j̄)

. (38)

Depending on the physical interpretation of the model, σ may 
be equal to the rate of entropy production (in units of kB). But 
for the moment, we are concerned only with the statistical 
properties of the model itself, abstracting from the thermo
dynamics, and have introduced this new symbol to reflect this 
distinction. In our simple ring model, the exact value of σ can 
be found by examining the probabilities of the individual tra
jectories of jτ  net positive steps, and noting that each one is 
related to the probability of its timereversed version by the 
same factor (w+/w−)

Njτ . Inserting this into equation  (38) 
yields:

σ = (w+ − w−) ln
w+

w−
. (39)

If we instead estimate the irreversibility based on small fluc
tuations, replacing pτ ( j) with a Gaussian distribution of mean 
j̄  and variance var( j), we find:

σest =
2
τ

j̄2

var( j)
= 2

(w+ − w−)
2

w+ + w−
. (40)

One can easily verify that σest � σ in this case, with equality 
only when (w+ − w−)/(w+ + w−) � 1.

Figure 4. Large deviation rate function I( j) = − lim 1
τ ln pτ ( j) for a ring of N discrete states, at fixed values of the typical current j̄  and 

irreversibility σ. The solid lines are exact calculations, and dotted lines are Gaussian extrapolations IG( j) based on small fluctuations. Left: 
uniform transition rates at three different N values with σ, j̄  fixed. The extrapolated probability of reversing the mean current is significantly 
different from the true I(−j̄) for N = 3, but improves as N increases, until the lines overlap at N = 100. These overlapping lines also 
represent the quadratic upper bound IB( j) for these σ, j̄  values. Right: three different sets of nonuniform transition rates at fixed N,σ, j̄. 
The number of states is fixed at N = 100, and the logratio of rates lnw+/w− varies sinusoidally with amplitude U0/N . This could be 
used as a model of driven diffusion through the sinusoidal potential energy landscape shaded on the ring in the inset, with amplitude U0 in 
units of kBT . As U0 becomes significantly larger than 1, the Gaussian estimate again begins to deviate downward from the true value of the 
entropy production rate.

Rep. Prog. Phys. 81 (2018) 016601



Review

10

Barato and Seifert computed σ and σest in a diverse array 
of more complex models, and found that the true irreversibil
ity was always bounded by this simple function of var( j) and 
j̄  [5]. To prove this relation for a generic Markov process, 
Gingrich et al made use of recently discovered properties of 
the large deviation rate function I( j), which represents the 
scaled logarithm of pτ ( j) in the long time limit:

I( j) = − lim
τ→∞

1
τ
ln pτ ( j). (41)

This function is minimized at the most likely value of j, which 
is equal to the mean j̄  in this limit. Since all the probability 
concentrates at this point, we always have I( j̄) = 0. (See [74] 
for a mathematically precise construction of I( j), accounting 
for the fact that j on the right hand side must be an integer 
multiple of 1/τ , while j on the left can be any real number). 
For large enough values of τ , I( j) plays a role analogous to 
free energy, and the distribution over j is given by

pτ ( j) ∝ e−τ I( j). (42)

The statistical irreversibility defined by equation (38) can now 
be written as

σ = I(−j̄). (43)

And the estimate based on small fluctuations can be obtained 
from a quadratic expansion of I( j) about I( j̄):

IG( j) ≡ 1
2

I′′(̄j)( j − j̄)2. (44)

Inserting this expression into equation (42) shows that the cur
vature of I( j) controls the variance of the resulting Gaussian 
distribution via var( j) = 1/τ I′′(̄j). The estimated irreversibil
ity from equation (40) can now be written in a parallel form 
to equation (43):

σest = IG(−j̄). (45)

We have plotted I( j) and IG( j) in figure 4 for various param
eter values sharing the same σ and j̄  in two different models. 
The first is the uniform ring model presented above, and the 
second is a ring with nonuniform rates.

Gingrich et al showed that I( j) is bounded from above by 
a different quadratic function which we will call IB( j) [29]. 
IB( j) is uniquely defined by requiring that IB( j̄) = I′B( j̄) = 0 
and IB(−j̄) = σ, with j̄  and σ taken from the original model. 
This bound was simultaneously discovered by Pietzonka, 
Barato and Seifert on the basis of numerical evidence [59]. 
In an infinitesimal neighborhood around j = j̄ , we have 
IG( j) = I( j), and so IB( j) is also an upper bound on the 
approximate rate function IG( j) in this local region. But since 
IG( j) and IB( j) are quadratic functions tangent to each other 
at their extremal point j = j̄ , it is impossible for them to inter
sect, and the local bound implies a global bound on IG( j):

IG( j) � IB( j). (46)

Figure 4 illustrates this result for the current around a single 
ring of states. Both panels include one parameter set for which 
the true I( j) is nearly quadratic, so that IB( j) ≈ IG( j) ≈ I( j) 
(N = 100 for left panel, U0 = 0 for left panel). IB( j) is the 

same for all parameter sets within each panel, since it is fully 
determined by σ and j̄ , and so this same curve can be used to 
compare IB( j) to I( j) and IG( j) at different parameter val
ues, revealing that IG( j) is always smaller than IB( j). Since 
IB(−j̄) = σ, this implies that σest = IG(−j̄) always underesti
mates the true irreversibility:

σest � σ. (47)

These bounds continue to apply when the allowed transitions 
between states are not arranged on a single ring, but connected 
in an arbitrary topology containing any number of interlock
ing cycles [29]. This makes the description of the dynamics 
more complicated, because the mean numbers of jumps per 
unit time for different transitions no longer need to be the 
equal. If jxyτ  is the net number of jumps from state x to state 
y observed in time τ , then we can define a coarsegrained cur
rent jd by taking a linear combination of all these microscopic 
currents:

jd ≡
∑
y>x

dxyjxy (48)

where dxy  are arbitrary constant coefficients. The statistical 
irreversibility σ is now obtained as σ = I({−j̄xy}) from the 
joint rate function I({ jxy}) that depends on all the microscopic 
currents, and IB( jd) is defined by IB( j̄d) = I′B( j̄d) = 0 and 
IB(−j̄d) = σ. The Gaussian estimate is defined in the same 
way as in the single ring, using the mean and variance of jd:

σest ≡ IG(−j̄d) =
2
τ

j̄2d
var( jd)

. (49)

The rate function bound in equation  (46) and the resulting 
bound on σ in equation (47) are purely mathematical results, 
derived from the properties of Markov processes prior to any 
thermodynamic interpretation. They provides new information 
that supplements the thermodynamic reasoning of section 3, 
converting formal expressions involving astronomically rare 
events into meaningful bounds on measurable quantities.

4.2. Performance bounds in clocks, sensors and motors

In section 3.3 we saw how recent advances in nonequilibrium 
thermodynamics can tighten the second law bound on the cost 
of reducing the internal entropy of a thermodynamic system. 
The bound on rare current fluctuations contained in equa
tion (46) has spawned a new family of results with no parallel 
in thermal equilibrium, placing constraints on dynamical per
formance goals. In these applications, the Gaussian estimate 
of irreversibility σest defined by equation (49) is itself the rel
evant figure of merit. Larger values of σest are associated with 
smaller relative fluctuations and more ‘precise’ dynamics. If 
the Markov model under consideration adequately accounts 
for all the dissipative processes in the system, then micro
scopic reversibility (9) implies that the true statistical irrevers
ibility σ is equal to the steadystate rate of entropy change in 
the environment:

σ =
1
kB

〈Ṡe〉. (50)
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Equation (47) relating σ and σest then specifies the mini
mum dissipative cost of achieving the desired precision, and 
is known as a ‘Thermodynamic Uncertainty Relation’, since 
its constraint on maximum precision is reminiscent of the 
Heisenberg uncertainty principle of quantum mechanics. In 
this section, we illustrate the consequences of this relation 
with some recent results on the precision of clocks and the 
efficiency of molecular motors.

Molecular motors like kinesin or the F1ATPase convert 
chemical energy into mechanical work on small length scales 
where thermal fluctuations are important. The efficiency η 
of a motor protein doing work against an applied force f  is 
defined as the ratio between the output work rate fv  and the 
mean input chemical work rate 〈Ẇ〉 in the steady state:

η =
fv

〈Ẇ〉
. (51)

Here v is the average speed of the motor traveling (or rotating) 
opposite to the direction of the force. The chemical work that 
is not transduced into mechanical work is released into the 
environment as heat, so we find:

〈Ṡe〉 =
1
T

(
〈Ẇ〉 − fv

)
 (52)

=
fv
T

(
1
η
− 1

)
. (53)

By inserting this into the bound of equation (47) and writing 
σest in terms of the mean speed v and the diffusion coefficient 
D of the motor motion, Pietzonka et al showed that the effi
ciency is constrained by [58]:

η �
1

1 + vkBT/Df
. (54)

Making the dynamics more deterministic by increasing 
the ratio v/D thus incurs an extra energy cost, reducing the 
motor’s efficiency.

Fluctuations are also a relevant design consideration in 
the construction of a clock, whose purpose is to provide a 
stable reference time for other processes. Any stochastic 
process that includes at least one cycle can be thought of as 
a clock, whose readout is the net number of forward jumps 
jτ  across one of the links in the cycle. The bound on σest in 
equation (47) then gives the minimum thermodynamic cost 
of a given precision goal, as discussed in [6], where the rela
tive error ε is defined by

ε2 ≡ var( j)
j̄2

=
2

σestτ
. (55)

The minimum entropy change in the environment 〈Ṡe〉τ = στ  
corresponding to a 1% relative error, for instance, is 20 000kB. 
This bound is independent of τ , so the rate of entropy change 
〈Ṡe〉 depends on the timescale at which the precision is 
demanded. Since we are concerned with relative error, higher 
precision is easier to obtain for longer time intervals. For 
instance, a 1% error in the measurement of an hour using the 

stochastic clock only demands 20 000kB h−1, but the relative 
error in the measurement of each minute within that hour will 
be larger by a factor of 

√
60. Achieving 1% precision in the 

measurement of each minute would demand the much higher 
entropy production rate of 20 000kB min−1. As illustrated in 
figure 4, the maximum precision at fixed 〈Ṡe〉 and j̄  is obtained 
in the nearequilibrium regime of large N, where the entropy 
change per step kB lnw+/w− = σ/Nj̄  becomes small.

This precision/dissipation tradeoff had been investigated 
empirically before the bound of equation (47) was discovered, 
in specific kinetic models of biological and artificial chemical 
clocks [16]. The bound on σest puts these findings in a broader 
context, although it remains an open challenge to rigorously 
apply it to chemical concentration oscillations in an informa
tive way. We can get an initial sense of the implications of the 
bound for these chemical clocks by replacing the full chemical 
reaction network with a phenomenological model like those 
of figure 4, where the system simply hops along a 1D ring of 
N states. In their original investigations, Cao et al expressed 
the clock precision in terms of fluctuations in the cycle period, 
whose average over many consecutive cycles can be related 
to the timeaveraged current j through a monitored link in our 
simple ring model as T = 1/j [16]. An ensemble of initially 
synchronized clocks will drift apart due to thermal fluctua
tions, and each member will complete its cycle in a different 
period of time. The variance of the distribution over comple
tion times will increase with each successive cycle, and the 
central limit theorem guarantees that this growth eventually 
becomes linear in the number of completed cycles Nc = j̄τ . 
This allows us to define a ‘diffusion coefficient’ D by

var(NcT ) = DNcT̄ (56)

where T̄ = 1/̄j  is the typical period. The dimensionless 
quanti ty D/T̄  measures the relative drift per cycle, and Cao 
et al found an empirical tradeoff between this measure of the 
drift and the entropy production per cycle in the four models 
they studied [16].

We can place a thermodynamic bound on D/T̄  by not
ing that the relationship between T  and j for small fluctua
tions in the τ → ∞ limit is adequately described by the linear 
approximation

T ≈ 1
j̄

(
1 − j − j̄

j̄

)
. (57)

From this expansion, it follows that var( j)/̄j2 = var(T )/T̄ 2, 
and so equations (45), (50) and (47) imply that

D
T̄

�
2kB

∆Sc
 (58)

where ∆Sc ≡ 〈Ṡe〉τ/Nc is the steadystate entropy production 
per clock cycle. The findings of Cao et al are consistent with 
this result, but they cannot saturate the inequality at large ∆Sc 
because the number of states per cycle N is a fixed feature 
of each model. As illustrated in figure  4, when the entropy 
change per reaction becomes larger than kB, the Gaussian 
extrapolation begins to significantly underestimate the true 
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irreversibility, which is here equal to the entropy production. 
At fixed N, it can be shown that D/T̄ � 1/N  even in the limit 
∆Sc → ∞ [22]. This opens up an interesting question as to the 
factors that constrain the number of states per cycle. Larger 
values of N lead to improved precision at fixed ∆Sc, but other 
costs must eventually come into play, perhaps involving the 
absolute cycle speed or robustness against externally imposed 
perturbations. Including these additional factors in the analy
sis will allow for a tighter estimate of the maximum feasible 
efficiency.

5. Thermodynamic potentials

In the previous two sections, we have seen how the second 
law can be tightened to provide informative constraints on 
farfromequilibrium processes. We now examine how far the 
traditional machinery of thermodynamics can be generalized 
to new kinds of states. In particular, we would like to look at 
those nonequilibrium states that most resemble equilibrium, 
with macroscopic properties that are independent of initial 
conditions and do not change in time. These include famil
iar situations like steady heat conduction, steady shear flow, 
and steady chemical flux through a chemostatted reaction net
work, as well as stationary states of novel materials like the 
contractile actin cytoskeleton of a living cell or a solution of 
selfpropelled Brownian particles.

In the absence of an externally maintained driving force, 
the steady state is characterized by a thermodynamic poten
tial, such as the entropy S, the Gibbs free energy G or the 
Helmholtz free energy F. This thermodynamic potential plays 
three distinct roles. First of all, the force required to modify a 
control parameter (such as the volume of a cylinder of gas) is 
given by a partial derivative of this function. Second, the val
ues of quantities that are left free to fluctuate (like the pressure 
of a gas at fixed volume) are found by extremizing the func
tion. Third, the thermodynamic potential obeys a Clausius 
relation, which defines the minimum amount of work or heat 
that must be exchanged with the system in order to accom
plish a transition from one steady state to another.

Much effort in nonequilibrium statistical mechanics over 
the past 75 years has been devoted to the search for generaliza
tions of these potentials for nonequilibrium steady states (see 
[45, pp 51–54]). It is now clear that there is no function that 
simultaneously plays all three roles in a generic nonequilib
rium system. But considerable progress has been made in for
malizing a thermodynamic approach to each of these aspects 
individually. In the regimes where these approaches provide 
concrete predictions, most of their content was already antici
pated in classical linear response theory. The new results can 
be seen as a way of systematizing and integrating those older 
findings, facilitating their application to more complex sys
tems and possibly extending their range of validity.

A common thread running through all these efforts is the 
role of ‘excess’ heat and ‘excess’ work. Since a nonequilib
rium steady state requires a continual supply of work and 
is constantly dissipating heat into its environment, the work 
and heat associated with a quasistatic transition or with 
relaxation to the steady state become infinite. To make use 

of these key thermodynamic quantities in the definition of a 
generalized thermodynamic potential, one must subtract off 
the ‘housekeeping’ heat flow of the steady state, preserving 
only the excess portion associated with the given fluctuation 
or transition.

In this section, we review the use of excess quantities in 
the calculation of statistical forces, the construction of vari
ational principles, and the analysis of transitions between 
steady states.

5.1. Statistical forces

Maes and coworkers have illustrated the role of excess work 
in nearequilibrium thermodynamics by investigating the ther
modynamic forces fλ conjugate to control parameters λ in 
isothermal steady states [7, 8]. If we consider the isothermal 
compression of a nonequilibrium material, for instance, such 
as an active matter suspension or a sheared fluid, the control 
parameter λ will be the volume V of the container, which we 
change by adjusting the position of one of the walls. The con
jugate force f  is the pressure P exerted by the material on that 
wall. In thermal equilibrium, the pressure is simply minus the 
derivative of the free energy: P = −dF/dV . The activity of 
the particles or the shear flow will modify this pressure, and 
we would like to know which aspects of this nonequilibrium 
activity determine the pressure change.

As a concrete example, consider the Brownian particle 
depicted in figure 5, which diffuses in a 1D ring with poten
tial energy landscape U(x) = U0 cos(x/2π − φ0) and periodic 
boundary conditions at x = 0 and x = 1. Our control param
eter λ will be the phase φ0 of the landscape. Because of the 
symmetry of the system, the free energy F is independent of 
φ0, and so the conjugate force f eq

φ = −dF/dφ0 of equilib
rium thermodynamics vanishes. Figure 5 shows what happens 
when a nonconservative driving force fnc is turned on, which 
pushes the particle around the ring counterclockwise. The 
agent in control of φ0 now feels a nonzero average force fφ 
trying to push φ0 in the direction of fnc.

Maes et al pointed out that the firstorder nonequilibrium 
correction to the statistical force is determined by the excess 
work associated with a change in the corresponding parameter. 
As illustrated in figure 5, the excess work d̄Wex is the transient 
part of the work done by the steady nonequilibrium driving 
forces after a sudden change of parameters from λ to λ+ dλ. 
To first order in the strength of the driving force, microscopic 
reversibility (9) requires that infinitesimal isothermal trans
itions satisfy an extended Clausius relation [8, 41]:

dF = −fλdλ+ d̄Wex (59)

where dF  is the change in the nonequilibrium free energy 
defined by equation  (23): F = U − T〈s〉. To linear order in 
the nonequilibrium drive strength, dF  remains equal to the 
change in equilibrium free energy dF  [8]. The right hand side 
of the equation is simply the total remaining work after sub
tracting the constant background of the steadystate work rate. 
Equation (59) thus says that quasistatic transitions between 
nearequilibrium steady states follow the Clausius relation 
∆F = W  after this background subtraction.
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As illustrated in figure 5, however, the fact that d̄Wex is not 
an exact differential makes some processes possible that would 
be forbidden in classical thermodynamics. When fnc > 0, the 
force fφ conjugate to φ0 is positive all the way around the 
ring, and cannot be written as the gradient of any potential 
function. More generally, if multiple control parameters are 
allowed to vary, the integral of fλ · dλ around a closed loop 
in control parameter space can be nonzero. This means that 
a cyclic process is possible that extracts work from the sys
tem, which would be a violation of the second law in classi
cal thermodynamics. A nonequilibrium steady state relies on 
a constant supply of work even when the control parameters 
are not changing, and the right kind of change of parameters 
can extract some of this work.

A more surprising consequence of equation  (59) for ther
modynamic reasoning is that the statistical force depends on 
the kinetics of the material. This stands in stark contrast to ther
mal equilibrium, where knowledge of microstate energies is 
sufficient to compute forces as derivatives of free energy. The 
source of this kinetic dependence is illustrated in the top panel 
of figure 5, which shows how the excess work d̄Wex done by 
the constant background driving forces depends on the time τ 
required to return to the steady state. This kinetic contribution 
enables boundary terms to significantly affect the pressure of 
macroscopic active mat erials, since the kinetics of relaxation 
after displacement of a boundary wall depend on the details of 

the interaction with that wall. Solon et al have recently dem
onstrated this for a model of active Brownian particles, where 
the mean force exerted by the suspension against a given wall 
generically depends on the stiffness of that wall, in a way that is 
independent of system size [72]. This implies that the pressure 
generally fails to be fully determined by other intensive param
eters like concentration and temperature, but remains sensitive 
to the properties of the container even in the thermodynamic 
limit.

As the strength of the driving force increases, the first
order approximation in equation  (59) eventually breaks 
down. Figure 5 shows how the excess work differential d̄Wex 
remains welldefined for all values of the driving force, but 
need not bear any obvious relationship to fλ or dF/dλ. It may 
still be a useful quantity for characterizing transitions between 
nonequilibrium steady states, however. Its behavior as a func
tion of fnc, for example, is very rich near the critical force 
fnc = U0, and may be related to other phenomena like giant 
diffusion and increased effective temperature that have been 
observed in this regime [32, 64].

5.2. Variational principles

Thermodynamic potentials also provide variational principles 
for predicting the properties of systems at thermal equilib
rium. Returning to the example of isothermal compression, 

Figure 5. Top: definition of excess work. When the control parameter λ is suddenly changed by a small amount dλ, the average work 
rate 〈Ẇ〉 due to the steady driving forces is modified. The system relaxes to a new steady state on a time scale τ. The excess work d̄Wex 
associated with this transition is the difference between the actual work done during this relaxation and the work that would have been 
done if the system had started in the steady state. Left: schematic of driven diffusion with periodic boundary conditions and a sinusoidal 
potential energy landscape of amplitude U0. The phase φ0 of the periodic landscape can be used as a control parameter. Right: the work 
−fφdφ0  required to quasistatically change φ0 is equal to −d̄Wex for small driving force fnc. This guarantees that their difference is equal 
to dF = 0, as required by equation (59). For larger driving, these two quantities diverge from each other, and equation (59) is no longer 
satisfied.
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we recall that the equilibrium probability peq(P) of a given 
fluctuation away from the deterministic pressure P∗ is deter
mined by the free energy (see [24]):

peq(P) ∝ e−F(P)/kBT . (60)

This relationship is essentially a coarsegrained version of 
the Boltzmann distribution. As the system size increases, the 
relative size of fluctuations decreases, and all the probabil
ity concentrates at the value P = P∗ that minimizes the free 
energy F.

In 1959, James McLennan showed that the correction to 
this distribution for nearequilibrium steady states is related 
in a simple way to the work done by the external driving 
forces [46, 51]. The coarsegrained version of his finding 
gives:

pss(P) ∝ e−[F(P)−Wex(P)]/kBT (61)

where Wex(P) is the extra work done on the way to a given 
fluctuation in P, over and above the steadystate work rate, as 
illustrated in figure 6. In the linearresponse limit considered 
by McLennan, the extra work on the way to a fluctuation is 
the same as the extra work during the relaxation of the fluc
tuation, and so the Wex appearing here is essentially the same 
quantity discussed in the context of statistical forces above. 
Wherever equation (61) is valid, steadystate values of observ
ables can be computed by minimizing F − Wex. By applying 
this variational principle, one can obtain the Green–Kubo lin
ear response formula [39, 40, 46] and other standard results of 
linear response theory.

The microscopic reversibility relation (9) provides a foun
dation for deriving exact generalizations of equation (61) for 
steady states arbitrarily far from equilibrium [9, 18, 19, 39, 40, 
46]. These expressions involve quantities that are extremely 
challenging in general to measure or even estimate, and do 
not directly supply any new predictive power. But they pro
vide a framework for systematically constructing perturbative 
expansions around the regime described by equation  (61), 
shedding new light on the physical factors that set the limits 
of linear response theory.

Following this line of reasoning, we have recently shown 
that the ‘nearequilibrium’ variational principle contained in 
equation (61) can accurately describe driven steady states far 
outside the realm of classical linear response theory [49, 50]. 
Our results complement those of Bunin et  al, who showed 
that linearresponse type results can remain valid under strong 
driving as long as the third cumulant of the work distribu
tion remains sufficiently small [13, 14]. Consider for example 
the sheared colloidal suspension illustrated in figure  6. The 
microstate of the system is defined by the positions of a set of 
interacting Brownian particles diffusing in a viscous solvent 
of volume V. The spatial configuration of the particles equili
brates on a timescale τ0 set by the diffusion coefficient, the 
number of particles, and the interparticle potential. A nonequi
librium steady state is created by moving the top of the con
tainer at a constant speed to set up a steady shear flow, where 
the solvent flow velocity in the x direction is proportional to 
the y position: vx = γ̇y. The constant of proportionality γ̇  is 
called the shear rate, and is a measure of the nonequilibrium 

Figure 6. Top: excess work associated with steadystate fluctuations. The mean steadystate work rate 〈Ẇ〉ss is constant in time, but 
conditioning on a given fluctuation in an observable X at time t = 0 makes the average deviate from 〈Ẇ〉ss. The excess work Wex is the 
part of this deviation leading up to t = 0. Left: a nonequilibrium steady state can be set up in a colloidal suspension by imposing a fixed 
flow gradient vx = γ̇y in the background solvent. Blue circles are Brownian particles interacting via a repulsive potential, and red arrows 
represent the imposed flow field. Right: the steadystate shear stress can be accurately predicted by minimizing F −Wex using the simple 
phenomenological model of stress fluctuations contained in equations (62) and (65).
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driving strength in this system. The instantaneous drag force 
per unit area σxy resisting this movement is a function of the 
particle configuration, since the mutual repulsion of the parti
cles can either assist or oppose the flow gradient depending on 
their relative positions.

We showed that the variational principle of equation (61) 
correctly predicts the typical value of σxy whenever its fluc
tuations are well described by a linear overdamped Langevin 
equation:

d
dt
σxy = −1

τ
(σxy − 〈σxy〉ss) +

√
2Dξ(t) (62)

where the Gaussian noise term is defined by 〈ξ〉 = 0, 
〈ξ(t)ξ(t′)〉 = δ(t − t′), and τ , D are independent of σxy. The 
excess work in this model is easily computed in terms of σxy, 
γ̇  and the relaxation time τ:

Wex(σxy) = Vτ γ̇(σxy − 〈σxy〉ss). (63)

Minimizing F −Wex generates a prediction for the typical 
drag force σ∗

xy:

σ∗
xy = σ0

xy +
1

kBT
γ̇τV〈σ2

xy〉eq, (64)

where σ0
xy is the drag force in the absence of interparticle 

repulsion, and is independent of the particle configuration.
Near equilibrium, when the relaxation time τ is still equal 

to its equilibrium value τ0, equation  (64) reproduces the 
Green–Kubo prediction of classical linear response theory. 
But at larger values of γ̇ , we expect the flow gradient to help 
the particle configuration relax more quickly. Eventually this 
convective relaxation becomes the dominant mechanism of 
particle rearrangement, and the relaxation timescale is roughly 
the time 1/γ̇  required for the flow gradient to push two adja
cent particles past each other. We can capture both the γ̇ → 0 
and γ̇ → ∞ limits by writing

τ =
τ0

1 + kγ̇τ0
 (65)

where k is a constant fitting parameter. Figure  6 compares 
the σ∗

xy values directly obtained from a numerical simulation 
with the variational prediction of equations (64) and (65). The 
simulation method and results are reported in more detail in  
[49, 50]. The equilibrium relaxation time τ0 was obtained from 
the autocorrelation function of σxy at thermal equilibrium, and 
k = 2 was chosen to give the best fit to the rest of the curve. 
Also plotted is the linear response prediction using τ = τ0, 
which only captures the initial slope of the σxy versus γ̇  curve.

We have generalized this procedure to encompass a broad 
class of systems and possible observables, as described in 
detail in [49]. The excess work Wex provides the appropriate 
nonequilibrium correction to the equilibrium variational prin
ciple, as long as nonlinear corrections to the linearized fluctu
ation dynamics change Wex by much less than kBT  in typical 
fluctuations. But we also showed that the regime where equa
tion (61) applies is precisely the regime where the nonequi
librium driving force merely adds a linear tilt to the effective 
free energy. Wex(X) is a linear function of the observable X, 
and if F(X) is quadratic, then subtracting Wex shifts the loca
tion of the global minimum without changing the shape of 

the function. This suggests that thermodynamically meaning
ful variational principles may not apply to patternformation 
scenarios or other cases where new phase transitions appear 
that did not exist in the equilibrium. In this sense, the extended 
Green–Kubo relation of equation  (64) is still a ‘nearequi
librium’ result, since it only applies when the driving force 
incrementally modifies the equilibrium state, and fails when 
qualitatively new phenomena are generated.

5.3. Clausius inequality

In section 5.1, we saw that quasistatic processes near equi
librium satisfy the generalized form of the Clausius relation 
expressed in equation  (59). For transitions between equilib
rium states, an even stronger statement can be made using the 
Clausius inequality obtained in equation (22):

W � ∆F , (66)

where F = U − T〈s〉 becomes equal to the equilibrium free 
energy F in the absence of driving forces. Our derivation 
of equation  (66) from the fluctuation theorem in section  3 
remains valid arbitrarily far from equilibrium, but the relation 
is not very informative for transitions between nonequilibrium 
steady states. Work is constantly being done even in the steady 
state to keep the system out of equilibrium, so W → ∞ in the 
quasistatic limit and the inequality is trivially satisfied.

A more interesting quantity is the finite ‘applied’ work

Wapp =

∫ τ

0

〈
∂U
∂λ

〉

t
λ̇ dt (67)

done by the external agent who manipulates the control 
parameters λ. The average is over the probability distribution 
at time t, obtained by evolving the initial distribution under the 
corresponding Fokker–Planck or Master equation. When the 
parameters are changed sufficiently slowly, the distribution 
is always very close to the steady state, and Wapp is simply 
minus the integral of the steadystate force fλ discussed in 
section 5.1. A naïve observer ignorant of the internal forces or 
gradients sustaining the nonequilibrium steady states would 
believe that Wapp is simply equal to the total work, and would 
expect it to satisfy equation (66).

As we saw in section  5.1, this expectation can already 
fail in the linear response regime. In the example of figure 5, 
dF = 0, but d̄Wapp = −fφdφ0  is negative. To gain a deeper 
understanding of why the equilibrium predictions fail and how 
they should be corrected, it would be useful to have a modified 
version of the Clausius inequality for Wapp, in which equality 
can be achieved for quasistatic transitions. Hatano and Sasa 
showed in 2001 that this relation exists for systems described 
by overdamped Langevin dynamics [31], and their findings 
were later extended to Poisson processes [27] and fluctuat
ing hydrodynamics [9]. It is now clear that a whole family of 
inequalities can be obtained using arguments very similar to 
our derivation of the original Clausius inequality in section 3.

The key insight behind these results lies in the fact that 
the trajectory probabilities P∗[x̂τ0 ] of the reverse process are 
integrated out when moving from the microscopic reversibil
ity relation (9) to the integral fluctuation theorem (16) [27, 
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71]. This means that integral fluctuation theorems for other 
quantities can be obtained by replacing the reverse trajectory 
probability with another properly normalized distribution over 
trajectories P†[x̂τ0 ]. In this way, an integral fluctuation theo
rem 〈e−A〉 = 1 can be obtained for any trajectory functional 
A[xτ0 ] that can be written in the form

A[xτ0 ] = − ln
P†[x̂τ0 ]
P[xτ0 ]

 (68)

for some choice of P†[x̂τ0 ]. As noted in section 3, the inequal
ity ex � x + 1 then implies that 〈A〉 � 0,

Hatano and Sasa identified a quantity that can be written 
in this form, reduces to the entropy change when the driv
ing forces are turned off, and vanishes in a nonequilibrium 
steady state. This quantity is now known as the ‘nonadiaba
tic’ entropy change ∆Sna [27]. It is closely related to two other 
quantities known in the literature as the ‘excess heat’ [27, 31] 
and ‘excess work’ [9]. These reduce to the heat and work, 
respectively, for systems whose steady state obeys detailed 
balance, and they exactly satisfy modified Clausius relations. 
But they do not correspond in general to any measurable phys
ical property [9, 68]. For this reason, we reserve the symbol 
Wex in this review for the physically meaningful excess work 
found by subtracting the (measurable) average steady state 
work rate from the actual work done by the continually acting 
nonequilibrium driving forces. But the fluctuation theorem 
for ∆Sna still helps us understand how nonequilibrium steady 
states differ from equilibrium states. It turns out that ∆Sna 
can be written in terms of derivatives of the trajectorylevel 
entropy s = −kB ln pss. For systems described by overdamped 
Langevin dynamics (see section 2.3), this allows us to rewrite 
〈∆Sna〉 � 0 as

Wapp � ∆F −
∫ τ

0
〈∇(U − Ts) · ẋ〉t dt. (69)

This reduces to the ordinary Clausius inequality for undriven 
systems where pss ∝ exp(−U/kBT), since then T∇s = ∇U 
and F = F. But when the nonequilibrium steadystate distri
bution becomes different from the equilibrium distribution, 
new possibilities open up. It remains the case that equality is 
achieved only in the limit of quasistatic variation of λ. But 
unlike the workfree energy theorem of classical thermody
namics, this result contains pathdependent quantities on both 
sides of the inequality. Thus the quasistatic work no longer 
defines a state function, and there is no longer any guarantee 
that the slow protocol extracts the maximum amount of work 
for a given path in controlparameter space.

6. Discussion

The second law of Thermodynamics requires that the total 
entropy of the system plus environment can never decrease: 
so if the entropy of the system decreases, this must be com
pensated by the flow of heat into the environment. But in sec
tion 3 we saw that the microscopic reversibility relation also 
attaches an entropic cost to statistical irreversibility, leading 
to much higher levels of entropy production than would have 

been demanded by the second law alone. When the entro
pic requirements of statistical irreversibility are accounted 
for, the remaining dissipation can provide a remarkably tight 
bound on the allowed internal entropy. In the example of 
compositional fluctuations in 2D selfassembly, the bound 
was tight enough to provide an accurate estimate of the dis
tribution of fluctuations without any other knowledge of the 
system dynamics.

For many systems of interest—especially those with many 
degrees of freedom—the statistical irreversibility is difficult 
to compute or even estimate, since it involves the probabil
ity of extremely rare reverse trajectories. The selfassembly 
calcul ations of section 3 relied on a recent result from large 
deviation theory that relates the irreversibility to a meas
ure of the size of typical fluctuations, which can be readily 
ascertained in an experiment or simulation. In section 4, we 
described how this result guarantees that a naïve extrapola
tion of Gaussian fluctuations in a timeaveraged probability 
current always underestimates the true irreversibility. We also 
discussed the new constraints it imposes on dynamical design 
goals, where the size of typical current fluctuations is itself the 
relevant figure of merit.

In a nonequilibrium steady state, thermodynamic poten
tials no longer provide shortcuts for calculating statistical 
forces, predicting typical values of fluctuating observables, or 
constraining the minimum amount of heat or work required 
to bring the system from one state to another. Efforts to iden
tify nonequilibrium thermodynamic potentials have shed con
siderable new light on the reasons why these shortcuts fail, 
and on the special features of thermal equilibrium that make 
them work. We saw in section 5 that empirically meaningful 
generalizations can be obtained close to equilibrium, where 
the thermodynamic quantities are modified by adding or sub
tracting the ‘excess’ heat or work associated with a transition 
or fluctuation. This provides a powerful unified perspective 
in which to justify and organize the results of classical linear 
response theory, facilitating their application to new situations 
and extending their range of validity.

In summary, it appears that nonequilibrium thermody
namics is finally approaching full maturity. While some of 
the early enthusiasm for universal principles has been disap
pointed, rigorous investigation has revealed an even richer 
structure whose outlines are now becoming clear. This theor
etical framework is now in a position to provide guidance for 
specific applications in biotechnology and materials science, 
and feedback from real design goals in these areas will be cru
cial for deepening and solidifying our understanding.
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