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Cytoskeletal filaments are capable of self-assembly in the absence of externally supplied chemical energy, but
the rapid turnover rates essential for their biological function require a constant flux of adenosine triphosphate
(ATP) or guanosine triphosphate (GTP) hydrolysis. The same is true for two-dimensional protein assemblies
employed in the formation of vesicles from cellular membranes, which rely on ATP-hydrolyzing enzymes to
rapidly disassemble upon completion of the process. Recent observations suggest that the nucleolus, p granules,
and other three-dimensional membraneless organelles may also demand dissipation of chemical energy to
maintain their fluidity. Cooperative binding plays a crucial role in the dynamics of these higher-dimensional
structures, but is absent from classic models of one-dimensional cytoskeletal assembly. In this paper, we present a
thermodynamically consistent model of active regeneration with cooperative assembly, and compute the maximum
turnover rate and minimum disassembly time as a function of the chemical driving force and the binding energy.
We find that these driven structures resemble different equilibrium states above and below the nucleation barrier.
In particular, we show that the maximal acceleration under large binding energies unites infinite-temperature local
fluctuations with low-temperature nucleation kinetics.

DOI: 10.1103/PhysRevE.98.022411

I. INTRODUCTION

Kirschner and Mitchison pointed out in the 1980s that
guanosine triphosphate (GTP) hydrolysis in microtubules is
responsible for the amazingly high rate of monomer exchange
between filaments and the surrounding solvent [1]. An order-
of-magnitude estimate using the measured association rates
and binding energies shows that the dissociation rates in
thermal equilibrium would be far too slow to support the
massive structural rearrangements that take place over the
course of the cell cycle. The large difference in chemical
potential between the GTP and GDP (guanosine diphosphate)
pools in the cytosol allows the microtubule polymerization
reaction to break detailed balance, speeding up the dynamics
while maintaining the strength and stiffness demanded by the
biological function of these structures.

The coupling of nucleotide hydrolysis to monomer turnover
seen in this particular case is in fact a generic feature shared by a
variety of intracellular structures, which rely on similar mech-
anisms of active regeneration to enable timely responses to
biochemical signals without sacrificing mechanical integrity.
Recent studies have established the Hsp70 family of chaper-
one proteins as an all-purpose adenosine triphosphate (ATP)
powered disassemblase, responsible for the rapid disassembly
of disordered aggregates as well as of the protein coats that
regulate vesicle formation in eukaryotic cells [2–4]. Phase-
separated intracellular droplets and granules appear to be
fluidized by similar mechanisms [5,6], and even the structure
of interphase chromatin seems to be set by the competition be-
tween equilibrium phase separation and active disassembly [7].
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All these processes exhibit high levels of cooperativity:
the dissociation rate of a given subunit from the structure
depends on the presence or absence of multiple neighboring
particles. This cooperativity gives rise to nonlinearities that
are not present in simple models of one-dimensional (1D)
cytoskeletal filaments, which allow monomers to dissociate
only at the ends of the filament where they have exactly one
neighbor. These nonlinearities can make the equilibrium state
of cooperative systems relatively insensitive to changes in
temperature, pH, or other parameters except for a narrow range
of values around a well-defined threshold [8, Ch. 9]. This
robustness should allow low levels of active regeneration to
accelerate the kinetics without significantly affecting the static
properties of the structure. But there is no general rule for
determining how much acceleration can be tolerated, or what
happens to the structure after this limit is reached.

Several models have recently been developed that combine
high-cooperativity equilibrium dynamics with a nonequilib-
rium driving force, leading to novel hypotheses about bista-
bility in vesicle coat dynamics [9] and in the behavior of
neurotransmitter protein receptors [10]. But these models
are formulated in the limit of an infinite thermodynamic
force, where at least one of the reaction steps is completely
irreversible, and so they are not suitable for investigating the
dependence of the system’s properties on thermodynamic drive
strength.

In this work, we therefore present a fully reversible model
of the intrinsically cooperative self-assembly of a high-
dimensional structure, with active regeneration powered by
a finite chemical potential difference �μ between chemical
reservoirs. This model allows us to compute the kinetic accel-
eration at the disassembly threshold as a function of chemical
potential difference and monomer binding energy. We confirm
that a small nonequilibrium driving force accelerates the
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FIG. 1. Thermodynamically consistent model of actively regen-
erating cooperative self-assembly process. (a) Blue circles and red
squares represent two distinct internal states of the assembling
monomers with different binding energies (�G > 0 and 0, respec-
tively). Arrows represent binding or unbinding and state-changing
reactions. A steady-state probability current is maintained around this
cycle by coupling the state change to ATP hydrolysis. The circles
are stabilized by binding to ATP (small circles), and the squares by
binding to ADP (diamonds). The free energy of hydrolysis biases the
state-change reaction of a bound circle towards the noninteracting
square state. The square rapidly dissociates into the solution, where
nucleotide exchange (double-headed arrows) is much faster than
hydrolysis, and transforms the particle back to the circle state. The
particle can now bind to the structure again, completing the cycle.
(b) Shaded curves are steady-state probability distributions pss(m)
over the occupancy fraction m, for increasing values of the system size
N , with �μ = 0, βJ = 8, and cA = 0.02. The black line is the effec-
tive free-energy density, defined as f (m) = − limN→∞ pss(m)/N .

kinetics without dramatically modifying any static properties.
But at a critical value of �μ the spectrum of fluctuations
suddenly changes, with a corresponding jump in speed. We
show that this novel phase combines the purely entropic local
fluctuation spectrum of an infinite-temperature equilibrium
state with the nucleation barrier that would be expected at the
actual temperature.

II. MODEL FORMULATION

Our model describes a solution of proteins that can exist
in two different conformational states with identical internal
free energy, illustrated by circles and squares in Fig. 1: an
“active” form that can bind to other active proteins to generate a
larger structure, and an “inactive” form with no binding ability.
Inactive proteins in solution at concentration cI stochastically
enter and leave free binding sites of an existing structure, with
Poisson rates kon

I = cI k and koff
I = k per site, respectively.

Since these proteins do not interact with each other or with
the active proteins, neither rate is affected by the occupancy
of other sites in the structure. For notational simplicity, we
have chosen the units of concentration such that cI = 1 is
the value at which these noninteracting proteins would occupy
half of the available sites. Active proteins, at concentration cA,
stick to other active proteins when they enter the structure,
and the ratio of their association and dissociation rates is
determined by the binding energy �G. These proteins bind
to available sites at a rate kon

A = cAk per site and dissociate at a
rate koff

A = k exp[−β�G], where β = 1/(kBT ) is the inverse
thermal energy scale. The binding energy is proportional to the
fraction m ∈ [0, 1] of the N binding sites of the fully assembled
structure that are currently occupied, so that �G = Jm for

some constant J . This form of �G ignores the effect of spatial
heterogeneity on the binding kinetics, but is commonly used
in statistical physics to construct a qualitatively correct and
analytically tractable theory of phase transitions [11, Chap. 5].

The existence of two internal states with different binding
energies allows for a thermodynamic driving force to acceler-
ate the kinetics. This acceleration is achieved by biasing the
active-inactive transition in different directions, depending on
whether the protein is in solution or in the structure [12]. In
solution, the transition should be biased towards the active
state, to maintain a large pool of proteins ready to assemble. But
in the structure it should be biased towards the inactive state,
so that bound proteins can be rapidly ejected and replaced.

This cycle breaks detailed balance, and so is impossible at
thermal equilibrium. Cells power these cycles with nucleotide
hydrolysis. In actin filaments, for example, the active monomer
conformation is stabilized by binding to ATP, and the inactive
conformation is stabilized by binding to ADP [13]. When
actin monomers are in solution, exchange of ADP for ATP
takes place at a much faster rate than ATP hydrolysis, and
the large concentration difference between the nucleotides
under physiological conditions biases the transition towards
the active ATP-bound state. But when a monomer is in a
filament, hydrolysis is much faster than nucleotide exchange,
and the large free energy of this reaction reverses the bias.

Figure 1 illustrates how we implemented this general
strategy within our model of cooperative assembly. We assume
nucleotide exchange is fast enough compared to hydrolysis for
proteins in solution that the latter reaction is negligible. The
cytosolic concentrations cA and cI of the two conformations
are thus fixed at the equilibrium values determined by the
ATP/ADP ratio. But within the structure, nucleotide exchange
is forbidden. The transition from the active to the inactive
conformation takes place at a rate kI , and is necessarily coupled
to ATP hydrolysis. The reverse process then involves reversing
the hydrolysis reaction, with the result that the rate kA for
returning to the active state is much slower than it otherwise
would be. Since the two conformations have the same intrinsic
free energy, the free-energy change during the transition comes
only from the altered interactions of the protein with the rest
of the structure, and from the nucleotide hydrolysis. Local
detailed balance [14,15] then requires that

kI

kA

= eβ(�μ0−�G), (1)

where �μ0 is the free energy released in the hydrolysis
reaction, related to the full chemical potential difference �μ

by

�μ0 = �μ − kBT ln
[ATP]

[ADP]
= �μ − kBT ln

cA

cI

, (2)

and the second equality results from rapid nucleotide exchange
in solution.

To study kinetic acceleration in this model, we had to
identify a fixed timescale to serve as a point of reference.
In many biochemical contexts, association rates are mainly
determined by the speed of diffusion to the binding site, and are
insensitive to changes in binding energy. We therefore chose
1/k as the basic timescale, and set k = 1 for the remainder of
the analysis.
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A trivial way to accelerate the kinetics without breaking
detailed balance would be to increase cI or kI , so that most
of the particles in the structure are inactive, and the typical
dissociation rate increases from koff

A = exp[−β�G] to koff
I =

1. But since the inactive particles are noninteracting, this would
really represent a transient density fluctuation in a concentrated
solution of freely diffusing particles, and not a process of
self-assembly. We therefore restricted our attention to the
regime cI , kI � 1, so that inactive monomers dissociate from
the lattice much faster than they are added from the solvent or
created from active monomers in the structure.

III. STEADY-STATE SOLUTION

We proceeded to quantify the maximum steady-state
turnover rate and the minimum time required for total dis-
assembly under these constraints. To this end we obtained
a closed set of dynamical equations for the structure occu-
pancy m by eliminating the short-lived states with bound
inactive particles from the original model, as described in
the Appendix [16]. In the resulting coarse-grained model,
the occupancy can stochastically increase by an increment
�m = 1/N in a Poisson process with rate

w+(m) = N (1 − m)cA[1 + e−β�μq(m)] (3)

and can decrease by 1/N with rate

w−(m) = Nme−βJm[1 + q(m)], (4)

where

q(m) ≡ kI

e−βJm + kI e−β�μ0
(5)

contains the contribution of transient visits to the inactive state.
This contribution grows with increasing �μ0, as the transition
to the inactive state becomes more and more irreversible.

In the limit of large N , the steady-state distribution gener-
ated by these dynamics scales as pss(m) ∝ e−Nf (m), and the
function f (m) can be calculated analytically, as shown in the
Appendix:

f (m) = feq(m) + 1

βJ
(Li2[−kI (e−β�μ0 + e−β�μ)eβJm]

− Li2[−kI (e−β�μ0 + 1)eβJm]) + C. (6)

The first term is related to the equilibrium free energy for a
fully coupled Ising model,

feq(m) = m ln m + (1 − m) ln(1 − m) − m ln cA − βJ

2
m2,

(7)

and the second is expressed in terms of the dilogarithm
function,

Li2(z) ≡
∞∑

k=1

zk

k2
, (8)

with a normalization constant C added at the end.
The probability pss(m) converges in the N → ∞ limit to

a delta function centered on the occupancy m∗ that minimizes
f (m), as illustrated in Fig. 1. For βJ > 4, f (m) generically
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FIG. 2. Active regeneration accelerates turnover and disassembly.
(a) Local turnover rate koff in assembled phase for four values of βJ .
cA and �μ0 are tuned to the coexistence point, with cI = 0.0001.
(b) Mean time τdiss for switching from high to low m states under
the same conditions, for a structure of size N = 100. (c) Effective
free-energy landscapes f (m) on the βJ = 12 curve at the four values
of �μ indicated by the dots with corresponding colors in panel (a).
(d) Stochastic trajectories for N = 100 at the three nonzero �μ

values, plotted in the same colors.

exhibits (at least) two local minima: one at high m correspond-
ing to an assembled phase, and one at low m corresponding to
a disassembled phase.

IV. TURNOVER AND DISASSEMBLY SPEED

In this limit, we can approximate the steady-state turnover
rate per particle by evaluating w− at the global minimum m∗:

koff ≡ w−(m∗)

Nm∗ = e−βJm∗
[1 + q(m∗)]. (9)

We computed the maximum value of koff in the assembled
phase as a function of J and �μ, with kI = 0.01 and cI =
0.0001 held fixed to ensure they stay sufficiently small. This
maximum occurs when �μ0 is tuned to the coexistence point,
so that any further acceleration would send the system over the
threshold into the disassembled phase.

At �μ = 0, koff ≈ 2e−βJ is several orders of magnitude
smaller than the rate for free diffusion out of a binding site.
At the other extreme, �μ → ∞, every inactivation reaction
ends in ejection from the lattice, so koff ≈ kI . Panel (a) of
Fig. 2 shows how the turnover rate crosses over from the
former limit to the latter, for four different values of βJ

spanning a physiologically relevant range of 5 to 8 kcal/mol
at T = 300 K. koff increases rapidly for moderate values of
β�μ, while the qualitative shape of the effective free-energy
landscape remains the same, with narrow minima near m = 0
and m = 1, and a single barrier in between. Near �μ =
10kBT , however, the landscape changes drastically, and an
additional local minimum emerges. When this local minimum
becomes the global minimum, koff discontinuously jumps to
its high-�μ limiting value. This discontinuity corresponds to
a first-order phase transition in the N → ∞ limit. Notably, the
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FIG. 3. Driven steady state combines features of two equilibrium
landscapes. (a) Effective free-energy landscape with �μ = 6.5kBT ,
below the nonequilibrium phase transition (black), compared with
the equilibrium landscape at the same temperature/coupling βJ =
12 and monomer concentration cA = 8.1 × 10−3 (blue, left) as well
as a modified equilibrium landscape with the same temperature but
a smaller monomer concentration cA = 8.8 × 10−4 (red, right). (b)
Same plots for �μ = 15.2kBT , except that the modified equilibrium
landscape (red, right) is obtained by making the temperature infinite,
and setting the (constant) off-rate equal to kI = 0.01.

physiological value of �μ ∼ 20kBT for ATP/ADP is more
than sufficient to cross this transition where it exists and reach
the plateau for all four coupling strengths.

The effect of active regeneration is magnified when we con-
sider the mean first-passage time τdiss for the global transition
from the assembled to the disassembled state, when the system
is taken across the phase boundary by an infinitesimal change
in one of the parameters [17]:

τdiss =
m∗∑

m=m0

1∑
m′=m

pss(m′)
pss(m)w−(m)

(10)

∼ eN[f (m† )−f (m∗ )]. (11)

Here m† is the location of the largest value of f (m) between its
two local minima, and the second line represents the qualitative
behavior of τdiss in the limit of large N . See the Appendix
for derivations of these expressions. The factor of N in the
exponent of Eq. (11) can rapidly inflate τdiss to astronomical
values. Panel (b) of Fig. 2 shows how τdiss decreases as a
function of �μ when N = 100, for the same four values of
βJ as in panel (a). The disassembly time is mainly determined
by the height of the nucleation barrier f (m†) − f (m∗), which
remains unchanged at the nonequilibrium phase transition
observed above, and so the jump in τdiss at the transition point
is barely visible on the plot. But the slope of the exponential
decrease is extremely large, so that a small change in �μ

can shift the disassembly transition from being effectively
impossible to being observable on accessible timescales. This
is illustrated in panel (d), where the shift in �μ from 9.5kBT to
10.5kBT allows several spontaneous assembly or disassembly
transitions to take place over the plotted time span.

V. EFFECTIVE TEMPERATURES

Having established that active regeneration can generate
substantial kinetic acceleration without disassembling
the structure, we proceeded to investigate the extent to
which the fluctuations and dynamics of these accelerated
states can be captured by an equilibrium model with modified
parameters. Figure 3 compares the effective free energy
of the actively regenerating system on both sides of the

nonequilibrium phase transition to similar equilibrium
free-energy landscapes. The low-m behavior always agrees
with feq(m) at the actual temperature, coupling and monomer
concentration. But as m increases, f (m) smoothly transitions
to a different equilibrium landscape with altered parameters.
When �μ is below the phase transition, as in panel (a), this
altered landscape is obtained by decreasing cA while keeping
the temperature fixed, until the high-m local minimum agrees
with the driven system, as shown in the Appendix. This causes
a small increase in the turnover rate for the equilibrium model
to koff = 6.7 × 10−6, almost ten times less than the value of
6.3 × 10−5 observed in Fig. 2. The barrier to disassembly,
however, is significantly lowered by this concentration shift,
causing an exponential drop in the disassembly time τdiss.
The equilibrium model slightly overestimates the barrier
reduction, predicting a τdiss eightfold smaller than the actual
value in the plotted example.

On the other side of the nonequilibrium phase transition,
the high-m part of the landscape is completely different. The
matching equilibrium landscape has an effective temperature
higher than the critical temperature Tc = J/4kB , and only
contains a single local minimum. When e−β�μ0 � e−βJm∗

/kI ,
the dynamics near the steady state become independent of J ,
and the effective temperature is infinite, as illustrated in panel
(b) of Fig. 3 and derived in the Appendix. But the actual system
still contains the nucleation barrier from the low-m regime,
which now determines the disassembly kinetics.

The emergence of this high effective-temperature phase
with a low-temperature nucleation barrier is a very robust
phenomenon, which should also arise in more complex models.
The essential assumption is that the operation of the regener-
ation process on a given particle is agnostic to the presence
or absence of other particles in the structure. At high enough
coupling, active regeneration is the dominant pathway for
particle removal in the assembled phase, and at high enough
�μ0, the thermodynamically required dependence of the
reverse rate on the coupling becomes irrelevant. In this regime,
all binding sites behave independently, and the statistics can
be determined by purely entropic considerations. Below the
nucleation barrier, on the other hand, active regeneration
becomes irrelevant, as long as it is sufficiently slow compared
to the spontaneous dissociation rate (which we guaranteed
here by requiring kI � 1). As we pointed out above, this
assumption is necessary if assembly is to proceed at all, and
does not limit the generality of the argument.

VI. DISCUSSION

We have constructed a minimal model of active regeneration
in cooperative self-assembly, and have shown that it can
significantly accelerate monomer turnover and assembly or
disassembly transitions, while maintaining a sharp distinction
between assembled and disassembled states. This confirms that
chemically powered regeneration can produce the combination
of structural resilience and rapid responsiveness characteristic
of living systems [18]. When the chemical driving force was
weak, we observed that the local spectrum of fluctuations
was only slightly modified, corresponding to an equilib-
rium system at the same temperature but lower monomer
concentration. In this case, we expect that the effective
monomer concentration even in more detailed models may be
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predictable from fundamental thermodynamic bounds, follow-
ing a recently developed method for analyzing nonequilibrium
assembly processes under moderate drive strength [19]. In the
limit of strong driving, we identified a novel nonequilibrium
phase with infinite effective temperature, which preserves the
nucleation barrier from the original temperature.

This is the regime we should find when regeneration is
driven by nucleotide hydrolysis under physiological condi-
tions, with �μ ∼ 20kBT . So far, a number of intracellular
structures from liquid droplets [20] to much smaller protein
aggregates [21] seem to be well described by models of equilib-
rium phase separation, but this is consistent with the predicted
persistence of the equilibrium nucleation barrier in the strong
driving regime. Testing our predictions will require further
investigation of the statistics of the assembled phase. We expect
that our analysis will be especially applicable to droplets whose
condensation is regulated by the phosphorylation state of the
monomers [22], where a difference in phosphorylation rates
within and outside the droplet could set up a dissipative cycle
analogous to the one we have described.

Finally, although we designed our model to capture the
physics of high-dimensional structures, our results may also
have implications for the behavior of cytoskeletal filaments.
Several mechanisms have been proposed that add effective
cooperativity to these one-dimensional structures through
length-dependent arrival of specialized molecules that modify
the dynamics [23]. A thermodynamic analysis of these systems
raises additional challenges beyond those produced by the
intrinsic cooperativity of higher-dimensional models, because
the energetics of the underlying molecular motor transport and
enzyme activity would also have to be explicitly accounted for.
But an exploration of the connections between these models
could provide interesting avenues for future work.
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APPENDIX

This Appendix contains derivations of the following expres-
sions:

(1) coarse-grained rates w+ and w−, Eqs. (3)– (5);
(2) effective free-energy landscape f (m), Eqs. (6) and (7);
(3) disassembly time τdiss, Eqs. (10) and (11).
It also includes additional plots comparing effective free-

energy landscapes f (m) with equilibrium landscapes, and an
analytic derivation of the infinite effective temperature of the
novel high-�μ phase.

1. Coarse-grained rates

Pigolotti et al. have described a systematic procedure for
eliminating short-lived states from a Markov process, which
exactly preserves the stationary state of the original process and

approximates the dynamics to arbitrary precision in the limit
of vanishing lifetime of the fast states [16]. In this section, we
give a heuristic motivation for this procedure and describe how
we applied it to our system.

In the main text, we required that the inactive monomers
bind so poorly that they make up a negligible percentage of the
total structure occupancy at any given time, by imposing

cI , kI � 1, (A1)

in units of time where the dissociation rate of inactive particles
is equal to 1. This guarantees that the incoming rates are much
smaller than at least one of the outgoing rates, so that the steady
state will have much more probability in the states with no
particle or a bound active particle in a given site than in states
with an inactive particle there.

Now the state of the system is entirely specified by the
occupancy m, and there are two ways for a site to change state:
either through direct association or dissociation of an active
monomer from the solution, or by transiently passing through
the inactive form. Since the exit rate from the inactive state
is much faster than the timescale of the dynamics of interest
(set by the small inactivation rate kI ), we can approximate
the second pathway as its own Markov process. The rate for
dissociation of a given particle via the inactive conformation is
simply the product of the inactivation rate kI and the probability
that the site ends up with a different occupancy after the
next jump (instead of returning to its starting point). This
probability is equal to the ratio of the dissociation rate of
the inactive particle (which equals 1 in our units) to the total
rate of disappearance of the inactive particle kA + 1, which
includes the rate of return to the active state without leaving the
structure. Likewise, the association rate through this pathway
is the product of the rate cI for adding an inactive particle to the
structure and the probability that it relaxes to the active state
instead of returning to the solvent.

Thus the rates for adding and removing active particles via
the inactive state are given by

koff
AI = kI

1

1 + kA

(A2)

kon
AI = cI

kA

1 + kA

, (A3)

in accordance with Eq. (9) of [16].
It is important to note that this procedure preserves the

thermodynamics of the original process. The entropy released
into the environment in the original model when an active
particle is removed via the inactive state is simply the logarithm
of the product of the rate ratios (cf. [14]):

�S = kB ln
kI

kA

1

cI

(A4)

The entropy released in the coarse-grained model is the
logarithmic ratio of the new rates, which gives the same value,
since the denominators of the fractions cancel out:

�S = kB ln
koff
AI

kon
AI

= kB ln
kI × 1

kA × cI

. (A5)

The total rate w+(m) for the transition from occupancy m

to m + 1/N is the sum of the rates of all possible ways of
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accomplishing this transition: particles can be added to any of
the N (1 − m) free sites, and they can be added to each site
by either of the two pathways. Similarly, the m to m − 1/N

transition rate w−(m) includes the two removal rates for all
Nm particles currently in the structure:

w+(m) = N (1 − m)

(
cA + cI

kA

kA + 1

)
, (A6)

w−(m) = Nm

(
e−βJm + kI

1

kA + 1

)
, (A7)

We can now express both rates in terms of the thermodynamic
quantities �μ and �μ0, using Eq. (2) from the main text to
obtain

eβ�μ = cA

cI

eβ�μ0 (A8)

= cAkI

cI kA

eβJm. (A9)

Substituting for cI and kA in favor of �μ and �μ0, we have

w+(m) = N (1 − m)cA[1 + e−β�μq(m)], (A10)

w−(m) = Nme−βJm[1 + q(m)], (A11)

where

q(m) ≡ kI

e−βJm + kI e−β�μ0
. (A12)

These are the expressions given in Eqs. (3)– (5) of the main
text.

2. Effective free-energy landscape

The coarse-grained dynamics are one-dimensional, with
hard boundaries at m = 0 and m = 1, so they cannot support
any steady currents. The average rate of jumps from m to
m + 1/N values has to equal the average rate of jumps from
m + 1/N to m in order to keep the probability distribution
p(m) stationary:

w+(m)pss(m) = w−(m + 1/N )pss(m + 1/N ). (A13)

This detailed balance relation implies that the model could also
describe an undriven system whose free-energy landscape is
given by the logarithm of pss(m). But the functional depen-
dence of these energies on m does not resemble any readily
identifiable physical situation.

To analyze the phase behavior of the model, we are in-
terested in the thermodynamic limit where N → ∞. For this
reason, we discussed the steady state distribution in terms of
the effective free-energy density f (m), defined by

f (m) ≡ − lim
N→∞

1

N
ln pss(m). (A14)

The derivative of this quantity is related to the ratio of rates via
Eq. (A13):

df

dm
≡ lim

N→∞
f (m + 1/N ) − f (m)

1/N
(A15)

= lim
N→∞

ln
pss(m)

pss(m + 1/N )
(A16)

= lim
N→∞

ln
w−(m + 1/N )

w+(m)
(A17)

= ln
w−(m)

w+(m)
. (A18)

If we substitute in the expressions for w− and w+ obtained in
the previous section, we find

df

dm
= ln m − ln(1 − m) − βJm − ln cA + ln

1 + q

1 + e−β�μq
.

(A19)

We can now integrate both sides of this equation to find
f (m) up to a constant of integration, which will be used to
normalize the probability distribution pss(m). The integrals of
the first four terms are straightforward, so that the equilibrium
free-energy density at �μ = 0 takes on the familiar form,

feq(m) = m ln m + (1 − m) ln(1 − m) − m ln cA − βJ

2
m2,

(A20)

as stated in Eq. (7) of the main text.
The integral of the final term has no elementary expression,

but can be evaluated in terms of the dilogarithm function

Li2(x) ≡
∞∑

k=1

zk

k2
= −

∫
dx

ln(1 − x)

x
(A21)

to give

f (m) = feq(m) + 1

βJ
(Li2[−kI (e−β�μ0 + e−β�μ)eβJm]

− Li2[−kI (e−β�μ0 + 1)eβJm]) + C, (A22)

where the constant of integration C can be used to normalize
the distribution. This is Eq. (6) of the main text.

3. Disassembly time

The cooperativity of this model generates a distinct thresh-
old for disassembly, which becomes a sharp first-order phase
transition as N → ∞. Close to the threshold, a small change
in any of the parameters can shift the probability of finding
the system in the assembled phase from nearly 1 to nearly
0. An important kinetic property of the system is the rate
at which it switches to the disassembled phase after this
parameter change. We quantified this rate using the mean
first-passage time τdiss for the system to reach the low-m
local minimum m0 of f (m), starting from the high-m local
minimum m∗. Since the dynamics are continuous across the
transition, we can compute this quantity at the coexistence
point where both these local minima have the same value of
f (m), and use this as a good approximation for the disassembly
time.

We can derive an expression for τdiss in terms of the
steady-state distributionpss(m), following [17, Sec. XII 2]. The
argument starts from a self-consistency equation for the mean
first-passage time τm,m0 from an arbitrarym to the disassembled
state m0. We initialize the system at m, then wait for a short
amount of time δt . Now the system could be at m + �m with
probabilityw+(m)δt , atm − �mwith probabilityw−(m)δt , or
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remain at m with probability 1 − [w+(m) + w−(m)]δt (where
�m = 1/N ). The probability of going more than one step away
from m has a probability proportional to δt2. Since we have
waited a time δt , the mean time to reach m0 is now equal to
τm,m0 − δt . The new waiting time can also be calculated by
averaging the mean first-passage times of the possible current
system states, weighted by their probabilities. These two ways
of calculating the average remaining time need to give the same
answer, yielding

τm,m0 − δt = τm+�m,m0w+(m)δt + τm−�m,m0w−(m)δt

+ τm,m0 (1 − [w+(m) + w−(m)]δt ) + O(δt2).

(A23)

This expression can be simplified by subtracting τm,m0 from
both sides, and dividing by δt :

w+(m)�τm+�m − w−(m)�τm + O(δt ) = −1, (A24)

where we have defined �τm ≡ τm,m0 − τm−�m,m0 . Now we can
take the limit δt → 0 and drop the O(δt ) term, obtaining a
recursion relation for �τm. Since w+(1) = 0 in Eq. (A10)
above, we have �τ1 = 1/w−(1) and can use Eq. (A24) to
construct all the �τm’s from this starting point. Each iteration
multiplies the previous increment �τm+�m by w+(m)/w−(m)
and adds a new term 1/w−(m). Thus we find

�τm = 1

w−(m)

+
1∑

m′=m

w+(m)w+(m + �m) · · ·w+(m′)
w−(m)w−(m + �m) · · ·w−(m′ + �m)

=
1∑

m′=m

w+(m)w+(m + �m) · · · w+(m′ − �m)

w−(m)w−(m + �m) · · · w−(m′)
,

(A25)

where the sum is over all the discrete values of the occupancy
from m to 1 in increments of �m. The compact form in the
second line is obtained by understanding the m′ = m term to
have a numerator equal to 1.

We can rewrite the terms of this series in a more transparent
form using Eq. (A13) above, which relates ratios of rates to
ratios of steady-state probabilities:

w+(m)

w−(m + �m)
= pss(m + �m)

pss(m)
. (A26)

Substituting this expression into Eq. (A25), we obtain

�τm =
1∑

m′=m

pss(m + �m)pss(m + 2�m) · · · pss(m′)
w−(m)pss(m)pss(m + �m) · · ·pss(m′ − �m)

=
1∑

m′=m

pss(m′)
w−(m)pss(m)

, (A27)

where we have canceled out all terms that occur in both
the numerator and denominator. Note that the m′ = m term
behaves correctly, since pss(m′) will cancel the pss(m) from
the denominator, leaving the expected value 1/w−(m).

The final step to obtain τm∗,m0 is to note the trivial fact
that τm0,m0 = 0, since it takes no time to reach m0 starting
from m0. This lets us construct τm∗,m0 by adding up �τm’s
from m0 to m∗:

τdiss ≡ τm∗,m0 =
m∗∑

m=m0

�τm

=
m∗∑

m=m0

1∑
m′=m

pss(m′)
w−(m)pss(m)

. (A28)

This is the expression used in Eq. (10) of the main text.
In the large-N limit, we can recast this in a more intuitive

form by replacing pss(m) with the asymptotic expression
e−Nf (m) (noting that the normalization constant cancels out).
This yields

τdiss ≈ N2
∫ m∗

m0

dm

∫ 1

m

dm′ eN[f (m)−f (m′ )] 1

w−(m)
. (A29)

As N → ∞, this integral can be evaluated via Laplace’s
method by finding the point where f (m) − f (m′) is maxi-
mized. This occurs when m′ is the location of the high-m local
minimum m∗, and m is the location of the local maximum
between the two states m†, (cf. [24, Eq. (6.4.35)])

τdiss ≈ eN[f (m† )−f (m∗ )] 2πN√
|f ′′(m∗)f ′′(m†)|

1

w−(m†)
. (A30)

For large N , the exponential part dominates the qualitative
behavior of τdiss as the free-energy landscape changes, which
is the meaning of Eq. (11) in the main text.

4. Comparison with equilibrium statistics

Figure 3 of the main text illustrates how local steady-state
fluctuations near the high-m local minimum can be approx-
imated by equilibrium distributions with altered parameters.
The example at low �μ was well approximated by the
equilibrium free-energy landscape at the same temperature and
coupling, but reduced monomer concentration cA. For high
�μ, the matching landscape had infinite temperature, with
constant off-rate per monomer equal to kI = 0.01. Figure 4
confirms the validity of these approximations for the whole
range of �μ values displayed in Fig. 2(a) and for both of the
βJ values from that figure that exhibit a nonequilibrium phase
transition.

The low-�μ approximation works because the local mini-
mum m∗ is only slightly perturbed from its equilibrium value
by the active regeneration, and remains within the range of pos-
sible values for the high-m local minimum at the original tem-
perature. In the vicinity of m∗, the nonequilibrium contribution
fneq(m) ≡ f (m) − feq(m) to the effective free- energy land-
scape can be approximated as a linear function of m: fneq(m) =
fneq(m∗) + f ′

neq(m∗)(m − m∗) + O[(m − m∗)2]. Up to an ar-
bitrary additive constant, the effect of the driving is to add an
extra linear term mf ′

neq(m∗) to feq. If we look at the form of
feq(m) in Eq. (7), we see that this is equivalent to changing the
monomer concentration to ceff

A = cAe−f ′
neq (m∗ ).

This argument fails when �μ crosses the threshold of the
nonequilibrium phase transition, and m∗ moves outside of
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(a) (b)

(c) (d)

FIG. 4. Equilibrium approximations are generalizable. (a) Effective free energy of the driven system and the equilibrium free energy under
a reduced monomer concentration, for �μ up to 10 kBT and βJ = 12. (b) Same comparison, but with βJ = 14. (c) Effective free energy of
the driven system and the equilibrium free energy at infinite temperature, for �μ above 11 kBT and βJ = 12. (d) Same comparison, but with
βJ = 14.

the range of values achievable by changing concentration.
In this high-�μ regime, setting the concentration equal to
ceff
A = cAe−f ′

neq (m∗ ) destroys the high-m local minimum in the
equilibrium landscape, leaving just a single minimum near
m = 0.

To understand the fluctuations in this regime, we observe
that, when kA = kI e

−β(�μ0−Jm) � 1, almost every transition
to the inactive state ends in dissociation from the lattice, so
the dissociation rate through this pathway is equal to the
inactivation rate kI . If it is also the case that kI � e−βJm, then
this is the dominant pathway for dissociation, and we can write

w−(m) ≈ NmkI . (A31)

These same requirements guarantee that

w+(m) ≈ N (1 − m)cA (A32)

as long as cI < cA. The m dependence of both of these
rates is identical to that of the undriven dynamics in the
absence of inter-particle coupling (βJ = 0), but with the
dissociation rate reduced from 1 to kI . The arguments of
Appendix section 2 above then yield f (m) ≈ m ln m + (1 −
m) ln(1 − m) − m ln cA/kI . If this regime includes the high-m
local minimum of f (m), as in Fig. 3(b), then the steady-state
fluctuations will resemble those of the equilibrium system at
βJ = 0, and the effective temperature is infinite.
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