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Abstract

A fundamental goal of microbial ecology is to understand what determines the diversity, sta-

bility, and structure of microbial ecosystems. The microbial context poses special concep-

tual challenges because of the strong mutual influences between the microbes and their

chemical environment through the consumption and production of metabolites. By analyzing

a generalized consumer resource model that explicitly includes cross-feeding, stochastic

colonization, and thermodynamics, we show that complex microbial communities generi-

cally exhibit a transition as a function of available energy fluxes from a “resource-limited”

regime where community structure and stability is shaped by energetic and metabolic con-

siderations to a diverse regime where the dominant force shaping microbial communities is

the overlap between species’ consumption preferences. These two regimes have distinct

species abundance patterns, different functional profiles, and respond differently to environ-

mental perturbations. Our model reproduces large-scale ecological patterns observed

across multiple experimental settings such as nestedness and differential beta diversity pat-

terns along energy gradients. We discuss the experimental implications of our results and

possible connections with disorder-induced phase transitions in statistical physics.

Author summary

The diversity, stability and functional structure of microbial communities have dramatic

effects on the health of humans and of ecosystems. The complexity of these communities

has so far precluded the development of a general predictive model that would capture the

dependence of these features on environmental conditions. We confronted this challenge

by constructing a flexible simulation framework, and randomly sampling parameters

under a variety of modeling assumptions to identify generic patterns. We found two quali-

tatively distinct regimes of community structure, which reproduce observed patterns of

biodiversity, and make new predictions about stability and function.
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Introduction

Microbial communities inhabit every corner of our planet, from our own nutrient-rich guts to

the remote depths of the ocean floor. Different environments harbor very different levels of

microbial diversity: in some samples of non-saline water at mild temperature and pH, nearly

3,000 coexisting types of bacteria can be detected, whereas at ambient temperatures warmer

than 40˚ C, most cataloged samples contain fewer than 100 distinct variants [1]. The functional

structure of these communities is also highly variable, with functional traits often reflecting

the environment in which the communities are found [1, 2]. A central goal of microbial com-

munity ecology is to understand how these variations in diversity, stability and functional

structure [3] arise from an interplay of environmental factors such as energy and resource

availability [4, 5] and ecological processes such as competition [6–9] and stochastic coloniza-

tion [10–13].

This endeavor is complicated by the fact that microbes dramatically modify their abiotic

environments through consumption and secretion of organic and inorganic compounds. This

happens on a global scale, as in the Great Oxidation Event two billion years ago [14, 15], and

also on smaller scales relevant to agriculture, industry and medicine. In this sense, every

microbe is an “ecosystem engineer” [16]. Metabolic modeling and experiments suggests that

metabolically mediated syntrophic interactions should be a generic feature of microbial ecol-

ogy [17–19] and that complex microbial communities can self-organize even in constant envi-

ronments with no spatial structure or predation [17, 20]. For these reasons, there has been

significant interest in developing new models for community assembly suited to the microbial

setting [21–25].

Here, we present a statistical physics-inspired consumer resource model for microbial

community assembly that builds upon the simple model introduced in [17] and explicitly

includes energetic fluxes, stochastic colonization, syntrophy, and resource competition. We

focus on modeling complex communities with many species and metabolites. By necessity,

any mathematical model of such a large, diverse ecosystem will contain thousands of param-

eters that are hard to measure. To circumvent this problem, we take a statistical physics

approach where all consumer preferences and metabolic parameters are drawn from random

distributions.

This approach to modeling complex systems has its root in the pioneering work of Wigner

on the spectrum of heavy nuclei [26] and was adapted by May to ecological settings [27].

Recently, there has been a renewed interest in using these ideas to understand complex systems

in both many-body physics (reviewed in [28]) and community assembly [12, 17, 25, 29–35].

The key insight underlying this approach is that generic and reproducible large-scale patterns

observed across multiple settings likely reflect typical properties, rather than fine tuned fea-

tures of any particular realization or community. Consistent with this idea, it was recently

shown that a generalized consumer resource model with random parameters can reproduce

many of the patterns observed in experiments where natural communities were grown in syn-

thetic minimal environments [17].

In this paper, we ask how varying the energy flux into an ecosystem and the amount of

cross-feeding affects microbial community assembly. We find that the resulting communities

generically fall into two distinct regimes, characterized by qualitative differences in their com-

munity-level metabolic networks, functional structures, responses to environmental perturba-

tions, and large-scale biodiversity patterns. We show our model predictions are consistent

with data from the Tara Oceans database [36] and the Earth Microbiome Project [1], and pro-

pose feasible experimental tests using synthetic communities.
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Methods

The starting point for our analysis is a new model that adapts MacArthur’s Consumer

Resource Model [7] to the microbial context by including energetics, stochastic colonization,

and the exchange and consumption of metabolites. We consider the population dynamics of S
species of consumers (e.g., microbes) competing for M types of substitutable resources. We are

interested in large, diverse ecosystems where S, M� 1. A schematic summarizing our model

is shown in Fig 1.

A natural setting for considering substitutable resources is when all essential biomass

components are supplied in excess, and the limiting factor for growth is the supply of usable

energy. In this context, one only needs to keep track of resources from which energy can be

harvested. All other nutrients are included implicitly, under the assumption that some of the

energy budget is used to import whatever materials are required for growth and reproduction.

Terminal waste products from which no more energy can be extracted are likewise treated

implicitly, and are not included among the M resource types.

In our model, the rate at which an individual of species i harvests energy from resource α
depends on the resource concentration Rα as well as on the consumer’s vector of resource pref-

erences ciα through the expression:

J inia ¼ wasðciaRaÞ; ð1Þ

where σ(x) encodes the functional response and has units of mass/time, while wα is the energy

density of resource α with units of energy/mass. In the microbial context the consumer prefer-

ences ciα can be interpreted as expression levels of transporters for each of the resources. In the

main text, we focus on Type-I responses where σ(x) = x, and we set wα = 1 for all α, but most

of our results still hold when σ(x) is a Monod function or the wα are randomly sampled, as

shown in Section 3 of S1 Text.

Fig 1. Microbial communities engineer complex chemical environments using a single energy source. (A) Schematic of microbe-mediated energy

fluxes in the Thermodynamic Microbial Consumer Resource Model. Each cell of species i(= 1, 2, . . . S) supplies itself with energy through import of

resources, generating an incoming energy flux Jinia for each resource type α(= 1, 2, . . . M). A fraction lα of this energy leaks back into the environment in

the form of metabolic byproducts, with each byproduct type carrying an outgoing energy flux Joutib ¼
P

a
laDbaJ inia . The remaining energy, Jgrowi , is used to

replicate the cell. (B) Each species is defined by a vector of consumer preferences that encode its capacity for harvesting energy from each resource type.

These vectors comprise a consumer matrix ciα. (C) A regional pool of species is randomly generated, and communities are initialized with random

subsets of these species to simulate stochastic colonization. (D) Each community is supplied with a constant flux κ0 of a single resource type (α = 0), and

all resources are continuously diluted at a fixed rate t� 1
R . (E) Consumer populations Ni and resource concentrations Rα as a function of time for two

realizations of this model, with low (l = 0.001) and high (l = 0.8) levels of uniform metabolic leakage (see S1 Text Section 2B for parameters).

https://doi.org/10.1371/journal.pcbi.1006793.g001
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We model leakage and secretion by letting a fraction lα of this imported energy return to

the environment, so that the power available to the cell for sustaining growth is equal to

Jgrowi ¼
X

a

ð1 � laÞJ
in
ia : ð2Þ

This parameterization guarantees that the community does not spontaneously generate

usable energy in violation of the Second Law of Thermodynamics. We assume that a fixed

quantity mi of power per cell is required for maintenance of a steady population of species i,
and that the per-capita growth rate is proportional to the remaining energy flux, with propor-

tionality constant gi. In typical experimental conditions, cell death is negligible, and mi is the

energy harvest required for the replication rate to keep up with the dilution rate. Under these

assumptions, the time-evolution of the population size Ni of species i can be modeled using the

equation

dNi

dt
¼ giNi J

grow
i � mi½ �: ð3Þ

The leaked energy flux Jouti ¼
P

a
laJ inia from each cell of species i is partitioned among the M

possible resource types via the biochemical pathways operating within the cell. We assume that

all species share a similar core metabolism, encoded in a matrix Dβα. Each element of Dβα spec-

ifies the fraction of leaked energy from resource α that is released in the form of resource β
(note that by definition, ∑β Dβα = 1). Thus, in our model the resources that are excreted into

the environment are intimately coupled to the resources a cell is consuming. The outgoing

energy flux contained in metabolite β is given by

Joutib ¼ wbn
out
ib ¼

X

a

DbalaJ
in
ia : ð4Þ

The dynamics of the resource concentrations depend on the incoming and outgoing mass

fluxes ninia ¼ sðciaRaÞ and noutia , which are related to the energy fluxes via the energy densities wα.

In terms of these quantities, we have

dRa
dt
¼ ha þ

X

j

Njðn
out
ja � n

in
jaÞ; ð5Þ

with hα encoding the dynamics of externally supplied resources. In this manuscript, we focus

on the case where the microbial communities are grown in a chemostat with a single externally

supplied resource α = 0 (Fig 1). In this case, the resource dynamics can be described by choos-

ing ha ¼ ka � t� 1
R Ra, with all the κα set to zero except for κ0. These equations for Ni and Rα,

along with the expressions for J inia and Joutia , completely specify the ecological dynamics of the

model.

This model has been implemented in a freely available open-source Python package “Com-

munity Simulator.” The package can be downloaded from https://github.com/Emergent-

Behaviors-in-Biology/community-simulator.

Results

To assess the typical community structure and resource pool stability for ecosystems obeying

Eqs (1)–(5), we randomly generated an M ×M metabolic matrix Dαβ, and a binary S ×M con-

sumer preference matrix ciα with S = 200 species and M = 100 resources. We chose ciα so that

each species had 10 preferred resource types on average, with ciα = 1, while the rest of the

resources were consumed at a baseline level of ciα = 0.01. The metabolic matrix Dαβ was

Available energy fluxes drive a transition in the structure of microbial communities
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sampled from a Dirichlet distribution, which guarantees that all the columns sum to 1 as

required by the definition of this parameter. In Section 3 of S1 Text, we show that the qualita-

tive patterns we observe are unchanged if ciα is drawn from a Gaussian or Gamma distribution,

or if the Dαβ matrix is made less sparse. The full sampling procedure is detailed in S1 Text Sec-

tion 1.

We chose our units of energy flux such that the mean maintenance cost mi over all species

in the regional pool is equal to 1. To break ties between species with similar consumption pro-

files, we added a Gaussian random offset to the mi of each species with standard deviation 0.1.

In S12 Fig., we show that these intrinsic fitness differences do not dominate the ecological

dynamics, and that many species with relatively high maintenance costs are able to reach large

population sizes in the steady-state communities. Finally, we set all the wα equal to 1, and

made all the leakage fractions identical, with lα = l for all α.

To assess the amount of variability in the results, we initialized 10 different communities by

seeding each one with a random subset of 100 species from the full 200-species pool. This sim-

ulates the stochastic colonization frequently observed in microbial ecosystems, where the com-

munity composition can randomly vary depending on the set of microbes this particular local

environment happened to be exposed to [37]. Fig 1 shows typical dynamical trajectories in the

presence of high (l = 0.8) and extremely low leakage (l = 0.001).

Available energy fluxes drive a transition between a “resource-limited” and

“diverse” regime

Our numerical simulations display a transition between two qualitatively different community

structures as we vary the externally supplied energy flux w0κ0 and the leakage/syntrophy l. In

the “thermodynamic limit” of M, S!1, the communities exhibit signatures of a phase transi-

tion analogous to those found in disordered systems in physics (see Discussion and S1 Text

Section 5). Fig 2 shows the effect of this transition on community diversity at our chosen finite

values of S and M. At low levels of energy flux or syntrophy, the diversity is severely limited by

resource availability. In the limit of high supplied energy flux and high leakage, a maximally

diverse regime is obtained, where the number of surviving species is limited only by the simi-

larity between consumption profiles within the regional species pool, in accordance with clas-

sical niche-packing theory [7] as we will discuss below.

The resource-limited and diverse regimes produce different patterns of

energy flux

The difference between the two regimes is most apparent from the perspective of the energy

flux networks. Because our model explicitly accounts for the flow of energy from one resource

type into another, we can compute all the steady-state fluxes and represent them graphically,

as shown in Fig 3 for some representative examples. Each node in this network is a resource

type, and each directed edge represents the steady-state flux Jβα of energy conversion from

resource α to resource β, mediated by one or more syntrophic consumers:

Jba ¼
X

i

NiJ
out
iba ¼ Dbala

X

i

NiwaciaRa: ð6Þ

The resource-limited regime produces a unidirectional flow of energy, which is converted

from the externally supplied resource type into an orderly succession of secreted resources.

For the sparse metabolic matrix shown in the top row of Fig 3, most resource types also have

extremely small incoming flux vectors in this regime, with magnitudes less than 1% the size of
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the largest flux in the network. The diverse regime displays a qualitatively different structure,

where all resources have significant incoming fluxes (regardless of the choice of Dαβ), and the

large number of loops in the network makes it impossible to put the resource types into any

definite order. In S10 Fig., we plot the fraction of samples from Fig 2 whose (pruned) flux net-

works are free of cycles, and confirm that this observation is generic. The dramatic contrast

between the community-level metabolism of the two regimes affects many other global fea-

tures of the ecosystem, which we will explore in the following sections.

Fig 2. Steady-state richness as a function of metabolic leakage l and externally supplied energy flux w0κ0. We generated 200

species, initialized 10 communities of 100 species each from this pool, and ran the dynamics to steady state under different

combinations of w0κ0 and l (see main text and S1 Text Section 2B for parameters). (A) Heat map summarizing all simulations,

colored by the average number of surviving species per steady-state community (“Richness”). Slices through the heat map are

plotted in S3 Fig. (B) Community compositions are displayed as rank-abundance curves for three illustrative w0κ0, l combinations

(colored by community richness): (1) “syntrophy-limited” (w0κ0 = 1000, l = 0.1), (2) “energy-limited” (w0κ0 = 28, l = 0.6) and (3)

“similarity-limited” (w0κ0 = 1000, l = 0.9). The lines are assigned different shades for clarity. The first two examples are parts of

the same resource-limited regime, manifesting similar statistical properties. The plots are truncated at a relative abundance of

0.5%; see S4 Fig. for full data.

https://doi.org/10.1371/journal.pcbi.1006793.g002
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The two regimes have distinct functional structures

To better understand the behavior of consumers in the two regimes, we examined the func-

tional traits of members of typical communities in each one. In the resource-limited regime,

many surviving species derive most of their energy directly from the externally supplied

resource (Fig 4A). In the diverse regime, by contrast, only a minority of the steady-state com-

munity members can consume this resource at all, and even these species receive most of their

energy from a diverse array of metabolic byproducts (Fig 4B). We quantified this observation

using the Simpson Diversity Meff
i of the incoming resource flux vectors J inia , which measures the

effective number of resources consumed by each species, and is closely related to the inverse

participation ratio in statistical physics. The Simpson Diversity is defined by

Meff
i ¼

X

a

Jinia
Jini

� �2
" #� 1

; ð7Þ

Fig 3. Energy flux networks differ in the two regimes. Community-scale energy flux networks are plotted for a characteristic example from the

diverse and resource limited regimes and two different choices of metabolic matrix Dαβ. The color of each pixel in the heat maps indicates the logarithm

(base 10) of the corresponding matrix entry. In the networks, each node represents one of the M = 100 resource types. Edges represent steady-state

energy flux from one resource type into another, mediated by consumer metabolism and leakage/secretion. The thickness of each edge is proportional

to the flux magnitude, and edges with magnitudes less than 1% of the maximum flux are not displayed. The single node at the top of each graph is the

externally supplied resource, and the rows of nodes at the bottom are resources that are not connected to the external supply by any flux above the 1%

threshold. A topological analysis of the flux networks of all the simulated communities can be found in S10 Fig.

https://doi.org/10.1371/journal.pcbi.1006793.g003
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where J ini ¼
P

a
J inia is the total incoming energy flux for each cell of this species. Meff

i

approaches 1 for species that obtain the bulk of their energy from a single resource type and

approaches M when all resource types are consumed equally. In the resource-limited regime,

the distribution of these values is sharply peaked around 2. In the diverse regime, the peak is

located around 10, which is the average number of resources with high transporter expression

in our binary sampling scheme for ciα. This shows that most community members in the

diverse regime utilize multiple energy sources, with the incoming flux spread evenly over all

resource types they are capable of consuming.

Responses to resource perturbations differ in the two regimes

Another important property of microbial ecosystems is how they respond to environmental

perturbations. Previous theoretical studies have shown that sufficiently diverse communities

Fig 4. Structure and stability of resource dynamics depend on ecological regime. (A) Consumed energy fluxes ð1 � lÞJ inia for each of the ten surviving

species in a resource-limited community (example 2 from Fig 2). The black portion of the bar is the flux ð1 � lÞJ ini0 due to the externally supplied

resource, and the colored bars represent the contributions of the other resources. Since these communities have reached the steady state, Eq (3) implies

that the total height of each bar equals the maintenance cost mi of the corresponding consumer species. (B) Same as previous panel, but for a

community from the diverse regime (example 3 from Fig 2). (C) Simpson diversity Meff
i of steady-state flux vector Jinia for each species from examples 2

(resource-limited) and 3 (diverse) in Fig 2. Vertical lines indicate the values of this metric when all the flux is concentrated on a single resource

(“Specialist”), and where it is evenly spread over ten resource types (“Generalist”). (D) Logarithm of susceptibility log
10
@�Ra=@ka of community-supplied

resources (α 6¼ 0) to addition of an externally supplied flux κα in these two examples.

https://doi.org/10.1371/journal.pcbi.1006793.g004
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can “pin” the resource concentrations in their local environment to fixed values, which are

independent of the magnitude of externally supplied fluxes [21, 38, 39]. In these studies,

resource pinning occurs only when the community saturates the diversity bound imposed by

the principal of competitive exclusion, i.e. when the number of coexisting species is at least as

large as the number of resource types. Such maximally diverse communities typically require

fine-tuning of the resource utilization profiles or imposition of universal efficiency tradeoffs in

cellular metabolism.

In our stochastically assembled communities, the diversity is always much lower than the

number of resource types, so we hypothesized that the resource concentrations should not

be pinned. To test this idea, we measured the response of the steady-state concentrations �Ra

to changes in external supply rates κα, in terms of the “resource susceptibilities” @�Ra=@ka
plotted in Fig 4D [34]. Our hypothesis was valid in the resource-limited regime, where

many resource susceptibilities are comparable to the susceptibility in the empty chemostat

@�Ra=@ka ¼ tR ¼ 1. But in the diverse regime, we were surprised to find that the susceptibili-

ties are 100 times smaller than this maximum value. This suggests that resource pinning may

be a generic phenomenon, observable in real ecosystems when the energy supply is suffi-

ciently large.

Niche overlap limits richness in diverse regime

In the diverse regime, the number of coexisting species (“richness”) is not limited by energy

availability or by access to secreted metabolites, but is still much less than the maximal value

of M = 100 set by the competitive exclusion principle [8], even though almost all M resource

types are present at non-negligible levels (as shown in S11 Fig.). We hypothesized that the

diversity in this regime is limited by the degree of similarity between consumption preferences

of members of the regional species pool. This can be quantified in terms of the niche overlap

[9, 40], whose average value in a large regional pool is given by:

hriji �

P
a
ciacja

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a
c2
ia

P
a
c2
ja

q

* +

¼
hciai

2

hc2
iai
: ð8Þ

Fig 5 shows how the richness varies as a function of hρiji. In the diverse regime the mean

richness decreases approximately linearly with increasing overlap. The richness of the

resource-limited regime, on the other hand, has only a very weak dependence on the niche

overlap. These results suggest that the distribution of consumption preferences in the regional

pool is the primary driver of community assembly in the diverse regime. Importantly, non-

zero niche overlap limits the number of coexisting species well below the upper bound

imposed by the competitive exclusion principle.

Nestedness and other large-scale beta-diversity patterns

Our aim in developing this model is to identify and understand generic patterns in community

structure, that are independent of particular biological details. In large-scale surveys of natural

communities, subject to many sources of noise and environmental heterogeneity, one expects

that only sufficiently generic patterns will be detectable. The simplest observable to examine in

such survey data is the list of species that are present or absent in each sample. We obtained

these presence/absence vectors from the simulations of Fig 2, and found that when we sorted

species by prevalence (rows in Fig 6A) and samples by richness (columns in Fig 6A), the

community composition generically exhibited a nested structure—less diverse communities

tended to be subsets of more diverse communities [41, 42]. We quantified this result using an
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established nestedness metric, as described in S1 Text and S7 Fig., and found that the actual

nestedness exceeds the mean value for a randomized null model by more than 100 standard

deviations. This suggests that nested structures may generically emerge in community assem-

bly through the interplay of stochastic colonization, competition, and environmental filtering.

Next, we asked if we large-scale beta-diversity patterns could be used to distinguish the

resource-limited and diverse regimes. We initialized 200 new communities with 100 randomly

chosen members from the full regional species pool and simulated these communities to

steady state in both the resource-limited and diverse regimes (see S1 Text Section 2B for

details). This sub-sampling of the full regional species pools mimics the effect of stochastic col-

onization, where a different random subset of species seeds each community. To better under-

stand beta-diversity signatures in the two regimes, we performed a Principal Component

Analysis (PCA) on community composition and projected the data onto the first two principal

components, as shown in Fig 6B–6D. In the resource-limited regime, the communities form

distinct clusters that are distinguished by different highly abundant species. This suggests

that harsh environments only allow a few species from the regional pool to rise to dominance,

and that these dominant species induce clustering of communities. Such “enterotype”-like

Fig 5. Richness of diverse regime depends on generalized niche-overlap. We took the values of supplied energy flux w0κ0 and leakage fraction l from

the three examples highlighted in Fig 2, and varied the average niche overlap hρiji between members of the metacommunity. For each w0κ0, l
combination and each value of hρiji, we generated 10 pools of 200 species, initialized 10 communities of 100 species each from this pool, and ran the

dynamics to steady state. The steady-state richness of each community is plotted against the niche overlap. Points are colored by their regime (diverse or

resource-limited), and solid lines are linear regressions. Inset: ciα matrices that define the regional pool for two different levels of overlap, with dark

squares representing high consumption coefficients.

https://doi.org/10.1371/journal.pcbi.1006793.g005
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behavior is a common feature observed in many microbial settings [43]. In contrast, the

diverse regime exhibited neither well-defined clusters nor dominant, highly abundant species.

Comparison to microbial datasets

The preceding results suggest that the resource-limited and diverse regimes can be distin-

guished using beta-diversity patterns. Rigorous testing of this prediction is beyond the scope

of the present work. But as an illustration of the kind of data we hope to explain, we examined

the natural gradient of solar energy supply in the Tara Oceans survey, which collected micro-

bial community samples from a range of depths across the world’s oceans [36]. Explicitly

including light as an energy source would require some modification to the structure of the

model equations, but we expect that the large-scale features of sufficiently diverse ecosystems

should not be sensitive to changes involving just one resource. We analyzed the 16S OTU com-

position of tropical ocean communities for all 30 sea-surface samples, where solar energy is

plentiful, and all 13 samples from the deep-sea mesopelagic zone where energy fluxes are

Fig 6. Resource-limited regime features community-level environmental filtering. (A) Presence (black) or absence (white) of all species in all 1,000

communities from the original simulations of Fig 2. (B, C, D) We initialized 200 new communities for each of the three examples highlighted in Fig 2A,

by randomly choosing sets of 100 species from the regional pool. Each panel shows the projection of final community compositions {Ni} onto the first

two principal components of the set of compositions.

https://doi.org/10.1371/journal.pcbi.1006793.g006

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 11 / 18

https://doi.org/10.1371/journal.pcbi.1006793.g006
https://doi.org/10.1371/journal.pcbi.1006793


limited. We projected these composition vectors onto their first two principal components as

in Fig 6 above, and plot the results in Fig 7. The sea surface data superficially resembles our

diverse regime, with a relatively uniform distribution of possible community compositions. In

contrast, the Mesopelagic Zone is similar to our resource-limited regime: the dominance of

the most abundant species is much more pronounced, and the compositions appear to cluster

into four discrete types. While these results are consistent with our model predictions, the

number of samples at each depth is still too small to draw any definitive conclusions about

clustering.

As mentioned above, our model also gives a natural explanation for the nestedness in

the Earth Microbiome Project community composition data [1], suggesting that it may be a

natural byproduct of complex microbial communities shaped by competition, environmental

heterogeneity, and stochastic colonization. To test how generic this feature is, we plotted

Fig 7. Ecological regimes and nestedness in microbiome data. (A) 16S OTU compositions of tropical mesopelagic zone samples from the Tara

Oceans database, collected at a depth of 200 to 1,000 meters [36]. Each dot is the projection of one sample onto the first two principal components of

the collection of mesopelagic zone samples. (B) Same as A, but for tropical surface water layer samples, collected at a depth of 5 meters. (C) Presence

(black) or absence (white) of each OTU above 0.5% relative abundance across all Tara Oceans samples.

https://doi.org/10.1371/journal.pcbi.1006793.g007
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presence/absence community compositions of all samples from the Tara Oceans dataset, sort-

ing samples by richness and OTU’s (“species”) by prevalence. Each sample contains thousands

of low-abundance OTU’s, which can obscure ecological patterns through their susceptibility to

sequencing noise and transient immigration. We therefore imposed a 0.5% relative abundance

threshold for an OTU to count as “present.” The resulting pattern in Fig 7 is qualitatively simi-

lar to our simulations (Fig 6D), and to the phylum-level data of the Earth Microbiome Project

[1], with the region below the diagonal significantly less populated than the region above the

diagonal (although the signal is much weaker). In S1 Text Section 4 and S7 Fig., we quantify

the nestedness using the same metric employed in the Earth Microbiome Project analysis [1,

44], and show that the score is significantly higher than the mean scores from two standard

null models.

Discussion

Advances in sequencing technology have opened new horizons for the study of microbial ecol-

ogy, generating massive amounts of data on the composition of both natural and synthetic

communities. But the complexity of these systems make it difficult to extract robust general

principles suitable for guiding medical and industrial applications. Numerical simulations pro-

vide a powerful tool for addressing this problem. By rapidly iterating numerical experiments

under a variety of modeling choices with random parameters, one can identify robust patterns

and use the resulting insights to guide targeted experiments.

Following this strategy, we developed a thermodynamic consumer resource model that

explicitly includes energetic fluxes and metabolically mediated cross-feeding and competition.

Using this model, we identified two qualitatively distinct regimes as we varied the amount of

energy supplied to ecosystem and the fraction of energy leaked back into the environment: a

low diversity “resource-limited” regime and a “diverse” regime. The structure of the resource-

limited regime is strongly constrained by species- and community-level environmental filter-

ing. Each community is dominated by a handful of species, making the community properties

sensitive to the idiosyncratic characteristics of these species and susceptible to environmental

fluctuations. In the diverse regime, communities exhibit more universal features because they

substantially engineer their environments. In particular, the concentrations of resources at

steady state are more narrowly distributed and insensitive to perturbations in the external sup-

ply rates. Moreover, each species draws its energy roughly equally from all resources, rather

than subsisting on the externally supplied resource as in the resource-limited regime.

The emergence of environmental engineering from this community-scale model makes it a

valuable tool for testing and refining existing conceptual frameworks employed by empirical

biologists [45]. A major limitation of the dominant paradigms for evolution and ecology from

the last century is the implicit assumption of a constant environment [46]. The generalized

Lotka-Volterra model, for example, remains a standard lens for reasoning about ecological

dynamics, both quantitatively and qualitatively [47–49]. It assumes that the dynamics emerge

from the sum of pairwise interactions among species, and that the sign and strength of these

interactions are intrinsic properties of the species. This can be a good assumption in some cir-

cumstances [47, 48], but fails to accurately describe the behavior of simple models that explic-

itly account for the state of the environment [50]. Our work provides a starting point for

determining the conditions under which pairwise models will generically succeed or fail in

describing the behavior of large ecosystems.

Our model complements other recent efforts at understanding microbial community ecol-

ogy. Taillefumier et al. proposed a similar model of metabolite exchange, and focused on the

case where the number of resource types M is equal to 3 [21]. In this case, repeated invasion
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attempts from a large regional species pool produced optimal combinations of metabolic strat-

egies. Goyal et al. examined the opposite limit, with M = 5, 000, but allowed each species to

consume only one type of resource [22]. This generated communities with a tree-like meta-

bolic structure, where each species depends directly on another species to generate its unique

food source. In our model, the large number of resource types (M = 100 in the current study)

makes spontaneous strategy optimization extremely unlikely. And our generic protocol for

sampling the metabolic matrix Dαβ allows a variety of community-level energy flux topologies

to emerge, as illustrated in Fig 3, which can sometimes be quite different from the tree net-

works of Goyal et al. The absence of highly specialized metabolic structure in our model

makes it especially well-suited for interpreting patterns in large-scale sequence-based datasets

such as the Earth Microbiome Project [1].

Our model predictions can also be directly tested using experiments with natural commu-

nities in synthetic laboratory environments [17, 51]. Our model predicts that beta-diversity

patterns and community-level metabolic networks can be significantly altered by increasing

the ecosystem’s energy supply, inducing a transition from the resource-limited to the diverse

regime. In the experimental set-up of [51], this can be done by directly adding chitinase

enzymes to the sludge reactor to increase the degradation of chitin-based organic particles on

which the ocean-derived microbial communities subsist. One could then look for shifts in the

resulting diversity patterns, and observe any changes in the topology of the metabolic flux net-

work using isotope labeling.

In this work we have largely confined ourselves to studying steady-state properties of

well-mixed microbial communities. Microbial communities often exhibit complex temporal

dynamics with well-defined successions [51–53]. It will be interesting to explore these dynam-

ical phenomena using our model. It is also well established that spatial structure can give rise

to new ecological phenomena [54, 55] and an important area of future work will be to better

explore the role of space in microbial community assembly.

Finally, we have obtained strong numerical evidence that the two regimes are separated by

a phase transition, which is likely closely related to disorder-induced phase transitions in sta-

tistical physics [32]. In Supporting Text Section 5, we examine the steady-state richness in the

three examples of Fig 2 under increasing values of M from M = 40 to M = 560. We find that

the richness is proportional to M in the diverse regime, but scales sub-linearly with M in both

examples from the resource-limited regime. In the M!1 limit, therefore, we expect to find

a sharp line between the regimes, with the ratio of the richness to M vanishing on the

resource-limited side. But we do not yet know the exact location of this boundary, or the criti-

cal exponents describing the behavior of the system near the transition.

Supporting information

S1 Text. Simulation details.

(PDF)

S1 Fig. Richness vs. w0κ0 and hlαi under different modeling choices.

(PDF)

S2 Fig. Simpson Diversity vs. w0κ0 and hlαi under different modeling choices.

(PDF)

S3 Fig. Richness (blue solid) and Simpson Diversity (red dotted) for cuts through the heat

map.

(PDF)

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 14 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s004
https://doi.org/10.1371/journal.pcbi.1006793


S4 Fig. Rank-abundance curves for three representative examples.

(PDF)

S5 Fig. Effective number of resources consumed under different modeling choices.

(PDF)

S6 Fig. Resource susceptibility.

(PDF)

S7 Fig. Quantification of nestedness.

(PDF)

S8 Fig. Scaling of consumer richness with system size.

(PDF)

S9 Fig. Scaling of other observables.

(PDF)

S10 Fig. Flux network topology.

(PDF)

S11 Fig. Number of available resources.

(PDF)

S12 Fig. Maintenance costs mi.

(PDF)

Author Contributions

Conceptualization: Robert Marsland, III, Wenping Cui, Joshua Goldford, Alvaro Sanchez,

Kirill Korolev, Pankaj Mehta.

Investigation: Robert Marsland, III, Wenping Cui, Joshua Goldford, Alvaro Sanchez, Kirill

Korolev, Pankaj Mehta.

Methodology: Robert Marsland, III, Pankaj Mehta.

Software: Robert Marsland, III.

Visualization: Robert Marsland, III, Pankaj Mehta.

Writing – original draft: Robert Marsland, III, Joshua Goldford, Pankaj Mehta.

Writing – review & editing: Robert Marsland, III, Wenping Cui, Joshua Goldford, Alvaro

Sanchez, Kirill Korolev, Pankaj Mehta.

References
1. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue

reveals Earth’s multiscale microbial diversity. Nature. 2017; 551:457. https://doi.org/10.1038/

nature24621 PMID: 29088705

2. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function

and diversity of the healthy human microbiome. Nature. 2012; 486:207. https://doi.org/10.1038/

nature11234

3. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial ecology:

building predictive understanding of community function and dynamics. The ISME journal. 2016;

10:2557. https://doi.org/10.1038/ismej.2016.45 PMID: 27022995

4. Loreau M. Consumers as maximizers of matter and energy flow in ecosystems. The American Natural-

ist. 1995; 145:22. https://doi.org/10.1086/285726

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006793.s013
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621
http://www.ncbi.nlm.nih.gov/pubmed/29088705
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/ismej.2016.45
http://www.ncbi.nlm.nih.gov/pubmed/27022995
https://doi.org/10.1086/285726
https://doi.org/10.1371/journal.pcbi.1006793


5. Embree M, Liu JK, Al-Bassam MM, Zengler K. Networks of energetic and metabolic interactions define

dynamics in microbial communities. Proceedings of the National Academy of Sciences. 2015;

112:15450. https://doi.org/10.1073/pnas.1506034112

6. Gause GF, Witt AA. Behavior of Mixed Populations and the Problem of Natural Selection. The American

Naturalist. 1935; 69:596. https://doi.org/10.1086/280628

7. MacArthur R. Species Packing and Competitive Equilibrium for Many Species. Theoretical Population

Biology. 1970; 1:1. https://doi.org/10.1016/0040-5809(70)90039-0 PMID: 5527624

8. Levin SA. Community equilibria and stability, and an extension of the competitive exclusion principle.

The American Naturalist. 1970; 104:413. https://doi.org/10.1086/282676

9. Chesson P. MacArthur’s consumer-resource model. Theoretical Population Biology. 1990; 37:26.

https://doi.org/10.1016/0040-5809(90)90025-Q

10. Chase JM. Community assembly: when should history matter? Oecologia. 2003; 136:489. https://doi.

org/10.1007/s00442-003-1311-7 PMID: 12836009

11. Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS, Konkel ME, et al. Quantification of the relative roles of

niche and neutral processes in structuring gastrointestinal microbiomes. Proceedings of the National

Academy of Sciences. 2012; 109:9692. https://doi.org/10.1073/pnas.1206721109

12. Kessler DA, Shnerb NM. Generalized model of island biodiversity. Physical Review E. 2015;

91:042705. https://doi.org/10.1103/PhysRevE.91.042705

13. Vega NM, Gore J. Stochastic assembly produces heterogeneous communities in the Caenorhabditis

elegans intestine. PLoS Biol. 2017; 15:e2000633. https://doi.org/10.1371/journal.pbio.2000633 PMID:

28257456

14. Bekker A, Holland HD, Wang PL, Rumble D III, Stein HJ, Hannah JL, et al. Dating the rise of atmo-

spheric oxygen. Nature. 2004; 427:117. https://doi.org/10.1038/nature02260 PMID: 14712267

15. Schirrmeister BE, Gugger M, Donoghue PCJ. Cyanobacteria and the Great Oxidation Event: Evidence

from Genes and Fossils. Palaeontology. 2015; 58:769. https://doi.org/10.1111/pala.12178 PMID:

26924853

16. Jones CG, Lawton JH, Moshe S. Organisms as Ecosystem Engineers. Oikos. 1994; 69:373. https://doi.

org/10.2307/3545850

17. Goldford JE, Lu N, BajićD, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent Simplicity in

Microbial Community Assembly. Science. 2018; 361:469. https://doi.org/10.1126/science.aat1168

PMID: 30072533

18. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al. Metabolic Resource Alloca-

tion in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Reports.

2014; 7:1104. https://doi.org/10.1016/j.celrep.2014.03.070 PMID: 24794435

19. Zomorrodi AR, SegrèD. Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol

Biol. 2016; 428:837. https://doi.org/10.1016/j.jmb.2015.10.019 PMID: 26522937

20. Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial micro-

cosms. Nature Ecology and Evolution. 2017; 1:0109. https://doi.org/10.1038/s41559-017-0109

21. Taillefumier T, Posfai A, Meir Y, Wingreen NS. Microbial consortia at steady supply. eLife. 2017; 6:

e22644. https://doi.org/10.7554/eLife.22644 PMID: 28473032

22. Goyal A, Maslov S. Diversity, stability, and reproducibility in stochastically assembled microbial ecosys-

tems. Physical Review Letters. 2018; 120:158102. https://doi.org/10.1103/PhysRevLett.120.158102

PMID: 29756882

23. Good BH, Martis S, Hallatschek O. Directional selection limits ecological diversification and promotes

ecological tinkering during the competition for substitutable resources. bioRxiv. 2018.

24. Butler S, O’Dwyer J. Stability Criteria for Complex Microbial Communities. bioRxiv. 2018.

25. Tikhonov M, Monasson R. Innovation Rather than Improvement: A Solvable High-Dimensional Model

Highlights the Limitations of Scalar Fitness. Journal of Statistical Physics. 2018. https://doi.org/10.1007/

s10955-018-1956-6

26. Wigner EP. Characteristic Vectors of Bordered Matrices With Infinite Dimensions. Annals of Mathemat-

ics (ser 2). 1955; 62:548.

27. May RM. Stability and complexity in model ecosystems. Princeton, N.J.: Princeton University Press;

2001.

28. D’Alessio L, Kafri Y, Polkovnikov A, Rigol M. From quantum chaos and eigenstate thermalization to sta-

tistical mechanics and thermodynamics. Advances in Physics. 2016; 65:239. https://doi.org/10.1080/

00018732.2016.1198134

29. Fisher CK, Mehta P. The transition between the niche and neutral regimes in ecology. PNAS. 2014;

111:13111. https://doi.org/10.1073/pnas.1405637111 PMID: 25157131

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 16 / 18

https://doi.org/10.1073/pnas.1506034112
https://doi.org/10.1086/280628
https://doi.org/10.1016/0040-5809(70)90039-0
http://www.ncbi.nlm.nih.gov/pubmed/5527624
https://doi.org/10.1086/282676
https://doi.org/10.1016/0040-5809(90)90025-Q
https://doi.org/10.1007/s00442-003-1311-7
https://doi.org/10.1007/s00442-003-1311-7
http://www.ncbi.nlm.nih.gov/pubmed/12836009
https://doi.org/10.1073/pnas.1206721109
https://doi.org/10.1103/PhysRevE.91.042705
https://doi.org/10.1371/journal.pbio.2000633
http://www.ncbi.nlm.nih.gov/pubmed/28257456
https://doi.org/10.1038/nature02260
http://www.ncbi.nlm.nih.gov/pubmed/14712267
https://doi.org/10.1111/pala.12178
http://www.ncbi.nlm.nih.gov/pubmed/26924853
https://doi.org/10.2307/3545850
https://doi.org/10.2307/3545850
https://doi.org/10.1126/science.aat1168
http://www.ncbi.nlm.nih.gov/pubmed/30072533
https://doi.org/10.1016/j.celrep.2014.03.070
http://www.ncbi.nlm.nih.gov/pubmed/24794435
https://doi.org/10.1016/j.jmb.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26522937
https://doi.org/10.1038/s41559-017-0109
https://doi.org/10.7554/eLife.22644
http://www.ncbi.nlm.nih.gov/pubmed/28473032
https://doi.org/10.1103/PhysRevLett.120.158102
http://www.ncbi.nlm.nih.gov/pubmed/29756882
https://doi.org/10.1007/s10955-018-1956-6
https://doi.org/10.1007/s10955-018-1956-6
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1073/pnas.1405637111
http://www.ncbi.nlm.nih.gov/pubmed/25157131
https://doi.org/10.1371/journal.pcbi.1006793


30. Dickens B, Fisher CK, Mehta P. Analytically tractable model for community ecology with many species.

Physical Review E. 2016; 94:022423. https://doi.org/10.1103/PhysRevE.94.022423 PMID: 27627348

31. Bunin G. Ecological communities with Lotka-Volterra dynamics. Physical Review E. 2017; 95:042414.

https://doi.org/10.1103/PhysRevE.95.042414 PMID: 28505745

32. Biroli G, Bunin G, Cammarota C. Marginally stable equilibria in critical ecosystems. New Journal of

Physics. 2018; 20:083051. https://doi.org/10.1088/1367-2630/aada58

33. Gibbs T, Grilli J, Rogers T, Allesina S. The effect of population abundances on the stability of large ran-

dom ecosystems. arXiv. 2017;1708.08837.

34. Advani M, Bunin G, Mehta P. Statistical physics of community ecology: a cavity solution to MacArthur’s

consumer resource model. Journal of Statistical Mechanics. 2018; p. 033406. https://doi.org/10.1088/

1742-5468/aab04e PMID: 30636966

35. Barbier M, Arnoldi JF, Bunin G, Loreau M. Generic assembly patterns in complex ecological communi-

ties. Proceedings of the National Academy of Sciences. 2018. https://doi.org/10.1073/pnas.

1710352115

36. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of

the global ocean microbiome. Science. 2015; 348:1261359. https://doi.org/10.1126/science.1261359

PMID: 25999513

37. Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic Invasion

Underlies Natural Gut Microbiome Stability. Current Biology. 2017; 27:1999. https://doi.org/10.1016/j.

cub.2017.05.034 PMID: 28625783

38. Posfai A, Taillefumier T, Wingreen NS. Metabolic Trade-Offs Promote Diversity in a Model Ecosystem.

Physical Review Letters. 2017; 118:028103. https://doi.org/10.1103/PhysRevLett.118.028103 PMID:

28128613

39. Tikhonov M, Monasson R. Collective Phase in Resource Competition in a Highly Diverse Ecosystem.

Physical Review Letters. 2017; 118:048103. https://doi.org/10.1103/PhysRevLett.118.048103 PMID:

28186794

40. MacArthur R, Levins R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species.

The American Naturalist. 1967; 101:377. https://doi.org/10.1086/282505

41. Patterson BD, Atmar W. Nested subsets and the structure of insular mammalian faunas and archipela-

gos. Biological Journal of the Linnean Society. 1986; 28:65. https://doi.org/10.1111/j.1095-8312.1986.

tb01749.x

42. Lomolino MV. Investigating Causality of Nestedness of Insular Communities: Selective Immigrations or

Extinctions? Journal of Biogeography. 1996; 23:699. https://doi.org/10.1111/j.1365-2699.1996.

tb00030.x

43. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human

gut microbiome. Nature. 2011; 473:174. https://doi.org/10.1038/nature09944 PMID: 21508958

44. Almeida-Neto M, Guimaraes P, Guimaraes PR Jr, Loyola RD, Ulrich W. A consistent metric for nested-

ness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008; 117(8):1227.

https://doi.org/10.1111/j.0030-1299.2008.16644.x

45. Shou W, Bergstrom CT, Chakraborty AK, Skinner FK. Theory, models and biology. Elife. 2015; 4:

e07158. https://doi.org/10.7554/eLife.07158 PMID: 26173204

46. Doebeli M, Ispolatov Y, Simon B. Point of view: Towards a mechanistic foundation of evolutionary the-

ory. Elife. 2017; 6:e23804. https://doi.org/10.7554/eLife.23804 PMID: 28198700

47. Venturelli OS, Carr AV, Fisher G, Hsu RH, Lau R, Bowen BP, et al. Deciphering microbial interactions in

synthetic human gut microbiome communities. Molecular systems biology. 2018; 14:e8157. https://doi.

org/10.15252/msb.20178157 PMID: 29930200

48. Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial micro-

cosms. Nature ecology & evolution. 2017; 1:0109. https://doi.org/10.1038/s41559-017-0109

49. Farahpour F, Saeedghalati M, Brauer VS, Hoffmann D. Trade-off shapes diversity in eco-evolutionary

dynamics. eLife. 2018; 7:e36273. https://doi.org/10.7554/eLife.36273 PMID: 30117415

50. Momeni B, Xie L, Shou W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial

interactions. Elife. 2017; 6:e25051. https://doi.org/10.7554/eLife.25051 PMID: 28350295

51. Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale

successions on model marine particles. Nature Communications. 2016; 7:11965. https://doi.org/10.

1038/ncomms11965 PMID: 27311813

52. Wolfe BE, Dutton RJ. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell. 2015;

161:49. https://doi.org/10.1016/j.cell.2015.02.034 PMID: 25815984

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 17 / 18

https://doi.org/10.1103/PhysRevE.94.022423
http://www.ncbi.nlm.nih.gov/pubmed/27627348
https://doi.org/10.1103/PhysRevE.95.042414
http://www.ncbi.nlm.nih.gov/pubmed/28505745
https://doi.org/10.1088/1367-2630/aada58
https://doi.org/10.1088/1742-5468/aab04e
https://doi.org/10.1088/1742-5468/aab04e
http://www.ncbi.nlm.nih.gov/pubmed/30636966
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1126/science.1261359
http://www.ncbi.nlm.nih.gov/pubmed/25999513
https://doi.org/10.1016/j.cub.2017.05.034
https://doi.org/10.1016/j.cub.2017.05.034
http://www.ncbi.nlm.nih.gov/pubmed/28625783
https://doi.org/10.1103/PhysRevLett.118.028103
http://www.ncbi.nlm.nih.gov/pubmed/28128613
https://doi.org/10.1103/PhysRevLett.118.048103
http://www.ncbi.nlm.nih.gov/pubmed/28186794
https://doi.org/10.1086/282505
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1111/j.1365-2699.1996.tb00030.x
https://doi.org/10.1111/j.1365-2699.1996.tb00030.x
https://doi.org/10.1038/nature09944
http://www.ncbi.nlm.nih.gov/pubmed/21508958
https://doi.org/10.1111/j.0030-1299.2008.16644.x
https://doi.org/10.7554/eLife.07158
http://www.ncbi.nlm.nih.gov/pubmed/26173204
https://doi.org/10.7554/eLife.23804
http://www.ncbi.nlm.nih.gov/pubmed/28198700
https://doi.org/10.15252/msb.20178157
https://doi.org/10.15252/msb.20178157
http://www.ncbi.nlm.nih.gov/pubmed/29930200
https://doi.org/10.1038/s41559-017-0109
https://doi.org/10.7554/eLife.36273
http://www.ncbi.nlm.nih.gov/pubmed/30117415
https://doi.org/10.7554/eLife.25051
http://www.ncbi.nlm.nih.gov/pubmed/28350295
https://doi.org/10.1038/ncomms11965
https://doi.org/10.1038/ncomms11965
http://www.ncbi.nlm.nih.gov/pubmed/27311813
https://doi.org/10.1016/j.cell.2015.02.034
http://www.ncbi.nlm.nih.gov/pubmed/25815984
https://doi.org/10.1371/journal.pcbi.1006793


53. Enke TN, Leventhal GE, Metzger M, Saavedra JT, Cordero OX. Micro-scale ecology regulates particu-

late organic matter turnover in model marine microbial communities. bioRxiv. 2018.

54. Korolev KS, Avlund M, Hallatschek O, Nelson DR. Genetic demixing and evolution in linear stepping

stone models. Reviews of Modern Physics. 2010; 82:1691. https://doi.org/10.1103/RevModPhys.82.

1691 PMID: 21072144

55. Menon R, Korolev KS. Public good diffusion limits microbial mutualism. Physical Review Letters. 2015;

114:168102. https://doi.org/10.1103/PhysRevLett.114.168102 PMID: 25955075

Available energy fluxes drive a transition in the structure of microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006793 February 5, 2019 18 / 18

https://doi.org/10.1103/RevModPhys.82.1691
https://doi.org/10.1103/RevModPhys.82.1691
http://www.ncbi.nlm.nih.gov/pubmed/21072144
https://doi.org/10.1103/PhysRevLett.114.168102
http://www.ncbi.nlm.nih.gov/pubmed/25955075
https://doi.org/10.1371/journal.pcbi.1006793

