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In this document, we provide a full explanation of the model employed in the article “Available energy fluxes drive a transition
in the diversity, stability, and functional structure of microbial communities.” We also describe its numerical implementation,
and present additional data illustrating the robustness of the qualitative results. Finally, we present preliminary evidence for
the existence of a bona fide phase transition in the M →∞ limit. All data and code for generating figures can be found at
https://github.com/Emergent-Behaviors-in-Biology/, as described in Section 2 below.

1. Model details

A. Generalities. We begin by defining an energy flux into a cell J in, an energy flux that is used for growth Jgrowth, and an
outgoing energy flux due to byproduct secretion Jout. Energy conservation requires

J in = Jgrowth + Jout [1]

for any reasonable metabolic model. Now consider a model with M resources Rβ with β = 1 . . .M each with “energy” or
quality wβ . It will be useful to divide the input and output energy fluxes that are consumed/secreted in metabolite β by J in

β

and Jout
β respectively. We define the fraction fout

β of the output energy secreted as resource β by

Jout
β ≡ fout

β Jout. [2]

We can define corresponding mass fluxes by
νout
β ≡ Jout

β /wβ [3]

and
νin
β ≡ J in

β /wβ [4]

In general, all these fluxes depend on the species under consideration and will carry an extra roman index i indicating the
species.

We assume that a fixed quantity mi of power per cell is required for maintenance of species i, and that the per-capita growth
rate is proportional to the remaining energy flux (Jgrowth −mi), with proportionality constant gi. Under these assumptions,
the time-evolution of the population size Ni of species i can be modeled using the equation

dNi
dt

= giNi(Jgrowth
i −mi). [5]

We can model the resource dynamics by functions of the form

dRα
dt

= hα(Rα)−
∑
j

Njν
in
jα +

∑
j

Njν
out
jα , [6]

where the function hα describes the resource dynamics in the absence of consumers. We can consider two kinds of dynamics:
externally supplied and self-renewing. For externally supplied resources, we take a linearized form of the dynamics:

hexternal
α (Rα) = κα − τ−1

α Rα [7]

while for self-renewing we take a logistic form for the dynamics

hself−renewing
α (Rα) = rαRα(Kα −Rα). [8]

In the present study, we only consider externally supplied resources.
These equations specify the general dynamics of all the models we consider. Metabolism is encoded in the relationship

between input, output, and growth fluxes.

B. Input fluxes and output partitioning. We will now specify the form of the input fluxes νin
β and the output partitioning fout

β .
This involves specifying how an input resource is turned into an metabolic byproducts. To try to capture metabolic structure,
we will divide the M resources into T classes (e.g. sugars, amino acids, etc.), each with MA resources where A = 1, . . . T and∑

A
MA = M . We will be interested in capturing coarse metabolic structure (i.e. metabolizing sugars outputs carboxylic acids,

etc). We will limit ourselves to considering strictly substitutable resources.
In all consumer resource models, we assume that

νin
iβ = σ(ciβRβ) [9]

where σ is a single-valued function encoding the relationship between resource supply levels and uptake rates. In the microbial
context the consumer preferences ciα can be interpreted as expression levels of transporters for each of the resources. We
consider three kinds of response functions: Type-I, linear response functions where

σI(x) = x, [10]
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a Type-II saturating Monod function,
σII(x) = x

1 + x
K

[11]

and a Type-III Hill or sigmoid-like function
σIII(x) = xn

1 +
(
x
K

)n , [12]

where n > 1.
In all the simulations of this paper, we assume that resources independently contribute to the growth rate. We define a

leakage fraction 0 ≤ lα ≤ 1 for resource α such that

Jout
α = lαJ

in
α . [13]

A direct consequence of energy conservation (Equation (1)) is that

Jgrowth
i =

∑
α

(1− lα)J in
iα =

∑
α

(1− lα)wασ(ciαRα) [14]

Finally, we denote by Dβα the fraction of the output energy that is contained in metabolite β when a cell consumes α. Note
that by definition

∑
β
Dβα = 1. These Dβα and lα uniquely specify the metabolic model for independent resources and we can

write all fluxes in terms of these quantities.
The total energy output in metabolite β is thus

Jout
iβ =

∑
α

DβαlαJ
in
iα =

∑
α

Dβαlαwασ(ciαRα). [15]

This also yields
νout
iβ =

∑
α

Dβαlα
wα
wβ

σ(ciαRα) [16]

We are now in position to write down the full dynamics in terms of these quantities:

dNi
dt

= giNi

[∑
α

(1− lα)wασ(ciαRα)−mi

]
dRα
dt

= hα(Rα)−
∑
j

Njσ(cjαRα)

+
∑
jβ

Njσ(cjβRβ)
[
Dαβ

wβ
wα

lβ

]
[17]

Notice that when σ is Type-I (linear) and lα = 0 for all α (no leakage or byproducts), this reduces to MacArthur’s original
model (1).

C. Choosing consumer preferences. We will now choose consumer preferences ciα as follows. We assume that each specialist
family has a preference for one resource class A (where A = 1 . . . F ) with 0 ≤ F ≤ T , and we denote the consumer coefficients
for this family by cAiα. We will also consider generalists that have no preferences, with consumer coefficients cgen

iα . We will
consider three kinds of models: one where the coefficients are drawn from Gaussian distributions, another where they are
drawn from Gamma distributions (which ensure positivity of the coefficients), and finally a discrete, binary preference model.

C.1. Gaussian consumer preferences. The Gaussian model allows a continuous gradation of transporter expression levels. We
assume that the variance is fixed to so that for all coefficients for all families

〈(δcAiα)2〉 = 〈(δcgen
iα )2〉 = σ2

c

M
. [18]

In the generalist family, the mean is also the same for all resources, and is given by

〈cgen
iα 〉 = µc

M
. [19]

The specialist families sample from a distribution with a larger mean for resources in their preferred class:

〈cAiα〉 =

{
µc
M

[
1 + M−MA

MA
qA
]
, if α ∈ A

µc
M

(1− qA), otherwise,
[20]

where MA is the number of resources in class A, and qA controls how much more species from family A prefer resources from
class A.

We have put a factor of M in the denominators of the expressions for mean and variance, because the sums over ciα in the
dynamical equations (17) always give rise to terms with means M〈ciα〉 or S〈ciα〉 and variances M〈(δciα)2〉 or S〈(δciα)2〉. The
factor of M allows us to keep σc, µc fixed when exploring the M,S →∞ limit in Section 5 below.
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C.2. Gamma consumer preferences. We will also consider the case where consumer preferences are drawn from Gamma distributions,
which guarantee that all coefficients will be positive. Since the Gamma distribution only has two parameters, it is fully
determined once the mean and variance are specified. We parameterize the mean and variance for this model in the same way
as for the Gaussian model.

C.3. Binary consumer preferences. In the binary model, there are only two possible expression levels for each transporter: a low
level c0

M
and a high level c0

M
+ c1. The elements of cAiα are given by

cAiα = c0

M
+ c1Xiα, [21]

where Xiα is a binary random variable that equals 1 with probability

pAiα =

{
µc
Mc1

[
1 + M−MA

MA
qA
]
, if α ∈ A

µc
Mc1

(1− qA), otherwise
[22]

for the specialist families, and

pgen
iα = µc

Mc1
[23]

for the generalists.
Note that the mean of the distribution is 〈ciα〉 = piαc1 + c0

M
, and the variance is 〈(δciα)2〉 = piα(1− piα). Both of these

scale as 1/M when M →∞, just like the Gaussian and Gamma versions, as long as c1, c0 and µc are held fixed.

D. Constructing the metabolic matrix. We choose the metabolic matrix Dαβ according to a three-tiered secretion model. The
first tier contains a preferred class of byproducts, such as carboyxlic acids for fermentative and respiro-fermentative bacteria,
which includes Mc members. The second contains byproducts of the same class as the input resource (when the input resource
is not in the preferred byproduct class). For example, this could be attributed to the partial oxidation of sugars into sugar
alcohols, or the antiporter behavior of various amino acid transporters. The third tier includes everything else. We encode this
structure in Dαβ by sampling each column of the matrix from a Dirichlet distribution with concentration parameters dαβ that
depend on the byproduct tier, so that on average a fraction fc of the secreted flux goes to the first tier, while a fraction fs goes
to the second tier, and the rest goes to the third:

dαβ =


d0

fc+fs
Mc

, ifα = c

d0
1−fc−fs
M−Mc , ifα 6= c and β = c

d0
fs

MA(β)
, ifα, β 6= c and A(α) = A(β)

d0
1−fs−fc

M−MA(β)−Mc
, ifα, β 6= c and A(α) 6= A(β).

[24]

The parameter d0 controls the randomness of the partitioning, ranging from deterministic partitioning when d0 → 0, to
maximally stochastic partitioning (with each input resource having just one randomly chosen output resource) as d0 → 1.

The mean of the Dirichlet distribution is always equal to 1/M , and the variance under this parameterization also scales as
1/M when the f ’s and d0 are held fixed. The sampling of Dαβ thus following the same scaling behavior as our scheme for the
consumer matrices in the M,S →∞ limit of Section 5.

2. Simulation and data analysis

A. The Community Simulator. We implemented the above modeling framework in a Python package called “Community Simu-
lator,” which can be downloaded and installed from https://github.com/Emergent-Behaviors-in-Biology/community-simulator. Once
this package is installed, the data can be downloaded from https://github.com/Emergent-Behaviors-in-Biology/crossfeeding-transition,
and the accompanying Jupyter notebook can be used to regenerate all the figures. The one exception is the energy flux network
figure, which was generated in MATLAB using a file exported from the notebook. The repository also contains a sample
MATLAB script for loading and visualizing the network file.

Community Simulator is designed to run dynamics on multiple communities in parallel, inspired by the parallel experiments
commonly performed with 96-well plates. The central object of the package is a Community class, whose instances are initialized
by specifying the initial population sizes and resource concentrations for each parallel “well,” along with the functions and
parameters that define the population dynamics. This class contains two core methods. Propagate(T) sends each community
to a separate CPU (for however many CPU’s are available), runs the given population dynamics for a time T using the
SciPy function odeint, and updates the population sizes and resource concentrations in each well to the time-evolved values.
Passage(f) initializes a fresh set of wells by adding a fraction fµν of the contents of each old well ν to each new well µ. (Fresh
media can also be added at this point, but this feature was not relevant for the current work). The resulting values of Ni
are converted from arbitrary concentration units to actual population sizes using a specified scale factor, and then integer
population sizes are obtained by multinomial sampling based on these values.
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The Community Simulator package also contains a set of scripts for generating models and randomly sampling parameters.
MakeConsumerDynamics and MakeResourceDynamics from the usertools module take a dictionary of assumptions concerning
the response type, metabolic regulation and resource replenishment, and generate the corresponding functions for dNi/dt and
dRα/dt. The function MakeMatrices, from the same module, randomly samples the consumer matrix ciα and the metabolic
matrix Dαβ .

B. Simulation Details. For this paper, we generated a binary consumer matrix with c0 = 0.01, c1 = 1 and µc = 10, and a
metabolic matrix with d0 = 0.2. This matrix defined a regional pool of S = 200 species, consuming M = 100 possible resource
types. We used only one family and one resource class in constructing the ciα and Dαβ matrices (but arbitrarily assigned each
resource and each species to one of four categories, as a null model for comparison with future structured simulations). We set
wα = gi = 1 for all i and α, and set the lα for all resources equal to each other. For the multinomial sampling described above,
we chose the scale factor so that Ni = 1 corresponds to a population of 106 cells. We generated dynamics with Type-I response
and no regulation. Resource type 0 was externally supplied with flux κ0, and all the other κα’s were set to zero.

To simulate stochastic colonization, we initialized each of 10 wells with 100 randomly chosen species from the regional pool,
with a population size of 106 cells per species per well. We propagated each well under Equations (17) for a time ∆t = 11, 500,
which is much longer than the maximum time required to relax to the steady state for any of the parameter regimes sampled.
We used the Passage method with fµν = δµν to periodically eliminate species whose populations became too small. For the
large steady-state population sizes we consider here (∼ 104 − 109, see S4 Fig.), the multinomial sampling eliminates species
whose populations are heading for extinction while minimally perturbing the dynamics of the survivors. We passaged after
every 5 time units of propagation from the beginning of the simulation up to time t = 500, then every 100 time units until time
t = 1, 500, and finally every 1,000 time units up to the final time t = 11, 500.

The timeseries shown in Figure 1E was generated under these assumptions, with w0κ0 = 500.
We propagated these 10 initial states using this procedure for 100 different combinations of externally supplied energy flux

w0κ0 and leakage fraction l, with 10 w0κ0 values evenly spaced on a logarithmic scale from 10 to 100, and 10 l values evenly
spaced from 0 to 0.9. Figure 2 of the main text shows the mean richness over the 10 parallel wells for each combination of
w0κ0 and l. The richness is defined as the number of species with non-zero abundance at the end of the simulation.

We focused on three representative examples for further analysis:

1. Syntrophy-Limited: w0κ0 = 1000, 〈lα〉 = 0.1

2. Energy-Limited: w0κ0 = 28, 〈lα〉 = 0.6

3. Similarity-Limited: w0κ0 = 1000, 〈lα〉 = 0.9.

The rank-abundance plots in Figure 2 of the main text show the population sizes in all 10 wells from each of these examples,
after normalizing them by the total biomass

∑
i
Ni. The plots were truncated at a relative abundance of 0.5% for clarity.

Rank-abundance plots for these same three examples in absolute units with no truncation can be found in S4 Fig..

C. Susceptibilities. One important property of an ecosystem is its sensitivity to changes in environmental conditions. Figure 3
of the main text quantifies this sensitivity in terms of a set of susceptibilities, defined by

χαβ ≡
∂R̄α
∂κβ

[25]

ηiβ ≡
∂N̄i
∂κβ

[26]

where N̄i, R̄α are the steady-state consumer populations and resource concentrations, respectively.
For the case of externally supplied resources and Type-I growth, setting Equations (17) equal to zero and differentiating

with respect to κβ yields:

0 =
∑
α

(1− lα)wαciαχαβ [27]

−τ−1
α δαβ =

∑
γ

(∑
j

cjγNj

[
Dαγ

wγ
wα

lγ − δγα
]
− τ−1

α δγα

)
×χγβ +

∑
jγ

cjγ

[
Dαγ

wγ
wα

lγ − δγα
]
Rγηjβ [28]
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The last equation can be reorganized as

−τ−1
α δαβ =

∑
γ

(∑
j

cjγNj

[
Dαγ

wγ
wα

lγ − δγα
]

− τ−1
α δγα

)
χγβ

+
∑
jγ

cjγ

[
Dαγ

wγ
wα

lγ − δγα
]
Rγηjβ [29]

For each value of β, this system of linear equations can be solved for χγβ and ηjβ by simply inverting a matrix (once the terms
corresponding to extinct species have been removed).

The histograms of Figure 3D in the main text contain the diagonal elements χαα for all resources except for the one supplied
externally (α = 0), which might be expected to behave somewhat differently. The χαα values from all 10 parallel communities
are included in the histogram. We generated one histogram for the similarity-limited regime, and one for the energy-limited
regime, using the examples defined in Section B above.

D. Niche Overlap. To find out what controls the diversity of the diverse regime, we varied the niche overlap, which quantifies
the similarity among consumer preferences within the regional species pool. We did this by holding µc fixed, and varying c1
from its original value of 1 down to a minimum value of 0.12. For each value of c1, we generated 10 ciα matrices, which each
defined a regional pool of 200 species. We then repeated the procedure of Section B above for each of these regional pools:
initializing 10 wells with 100 species and running them to the steady state with the same sequence of propagation and passage
steps. The final richness of each community is plotted in Figure 4 of the main text as a translucent point, such that more
common richness values are darker. We included all three examples defined at the end of Section B in the plot, and colored
both examples from the resource-limited regime blue, while the diverse regime was colored red.

E. Beta Diversity. To examine the beta diversity patterns in each regime, we initialized 200 wells with 100 randomly chosen
species from the regional pool of 200 species, and propagated them to steady state following Section B under the three different
choices of w0κ0 and l listed at the end of that section. To visualize the variation among these communities, we used the Python
package scikit-learn (2) to compute the first two principle components of the set of composition vectors in each regime. We
then projected the compositions onto the plane spanned by these vectors, and generated a scatter plot of the results. We also
computed the percentage of the total variance accounted for by each of these two principal components, and indicated the
value in parentheses on each axis.

F. Data Format. The output of all the simulations was saved to a set of Microsoft Excel spreadsheets, which can be easily
imported into Python for analysis using the Pandas package. Each simulation generated four files: final consumer popula-
tions (‘Consumers’), final resource concentrations (‘Resources’), a metadata summary (‘Parameters’), and initial conditions
(‘Initial_State’). The ciα and Dαβ matrices as well as the mi and wα were pickled into a binary file (‘Realization’). The
file names also include the date on which the data was generated, and a task ID when multiple files were generated on the
same day.

The first column in the consumer and resource tables is the index of the simulation run. The second and third columns of
the consumer file are the family ID and species ID, respectively. In the resource file, these columns contain the class ID and
resource ID. The remaining columns contain the populations/concentrations for each well. The consumer populations are in
units of 106 cells.

All the parameters that change between runs are included in the metadata file (‘Parameters’). The first column of this file
is the simulation run index, corresponding to the index in the consumer and resource files.

The initial conditions file contains the initial population sizes for each of the wells.

3. Robustness of qualitative results

We tested the robustness of our qualitative results by modifying the modeling assumptions in five ways. We have given each way
a descriptive name, which can be used to look up the raw data files from the supplemental data folder using the file_list.csv
table:

• main_dataset is the data from the main text

• type_II uses a Type II functional response, with K = 20.

• dense_metabolism has a dense metabolic matrix with d0 = 0.001.

• randomness adds (quenched) random variation to wα and lα, with standard deviations 0.1 and 0.03, respectively.

• Gaussian_sampling samples the ciα’s from Gaussian distributions, with the same mean 0.11 and standard deviation 0.3
as the binary matrix used in the main text.
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• Gamma_sampling samples the ciα’s from Gamma distributions, with the same mean and variance.

The following sections describe each of these choices in more detail. S1 Fig., S4 Fig., S5 Fig. and S6 Fig. show the key plots
from the main text along with the new versions generated under all these modified assumptions. S2 Fig. and S3 Fig. display
another diversity measure not discussed in the main text: the Simpson Diversity (S. D.). This is defined analogously to the
“effective number of resources consumed” presented in Equation (6) of the main text:

S.D. =

[∑
i

(
Ni
N

)2
]−1

[30]

where N ≡
∑

i
Ni. As discussed in the main text in connection with resource fluxes, this quantity approaches 1 when there is

one large Ni ≈ N and all the other populations are very small. It approaches the number of species (i.e., the richness) as the
biomass distribution becomes more uniform.

A. Type-II Growth. We chose the Monod parameter K = 20 in the Type-II growth simulations in order to ensure that at least
one species would survive in the steady state in all simulations. The maximum possible incoming energy flux in the Type-II
model is equal to 0.1K when wα = 1 and l = 0.9, and this must exceed mi ≈ 1 for a species to survive. K = 20 provides a
maximum flux of 2 in this case.

B. Metabolic Matrices. The metabolic matrices Dβα are plotted in Figure 3 of the main text for main_dataset and
dense_metabolism (all other simulations use the same metabolic parameters as main_dataset). We see that d0 = 0.2 leads to
a very sparse matrix, with only a few secreted byproducts per input resource, while the secretion fractions for d0 = 0.001 are
much more uniform.

C. Randomness in wα and lα. To relax the assumption of all the wα’s and lα’s being equal, we sampled these two vectors from
Gaussian distributions. We chose the standard deviations of the distributions to be small enough that both quantities would
almost always be positive, and lα would remain less than 1.

D. Gaussian and Gamma Sampling. Sampling consumer preferences from the continuous Gaussian and Gamma distributions
makes the differential equations much more stiff than in the binary case. To ensure stable operation of the integrator, we
“passaged” the cells every 0.1 time units. Each call of the “passage” method zeros out small negative values of resource
concentration or consumer population that arise because of numerical error, in addition to setting small consumer populations
to zero. This high frequency of passaging made the simulation more computationally intensive, so we only propagated
these simulations for 200 time units. We computed the root-mean-square difference between the per-capita growth rates
(1/Ni)(dNi/dt) and zero to check whether the simulations had converged. We found that all of them had acceptably converged,
except for some of the runs at w0κ0 < 100 in the Gaussian case. The Gaussian model is unphysical, because almost half of the
consumer preferences are less than 0 for these simulations, and so we decided not to spend more computation time in pursuit
of convergence.

4. Quantification of Nestedness

Almeida-Neto et al. have introduced a quantitative measure of nestedness, called the “Nestedness metric based on Overlap
and Decreasing Fill,” or NODF (3). S7 Fig. shows how the NODF depends on the relative abundance threshold for the Tara
Oceans data, as compared with two null models taken from the Earth Microbiome Project analysis (4). Null Model 1 keeps
the richness of each sample the same while randomly altering the identities of the surviving species. It tells us how much
nestedness we should expect by chance from a set of samples with the given levels of diversity, in the absence of any ecological
mechanisms. Null Model 2 keeps the prevalence of each species the same while randomly assigning it to different samples. This
procedure generates another well-defined family of random matrices with similar bulk statistics to the original data, but lacks
the operational interpretation of Null Model 1. For this reason, the comparison with Null Model 1 is more meaningful, but we
include Null Model 2 for completeness.

For each of the null models and each value of the relative abundance threshold, we generated 100 random permutations of
the data matrix and computed the mean and standard deviation of their NODF scores. We found that the actual nestedness
exceeds that of Null Model 1 by at least 20 standard deviations for all values of the threshold. For the relative abundance
threshold of 0.5% employed in Figure 7 of the main text, the true NODF also exceeds Null Model 2 by 5.8 standard deviations.

The figure also shows histograms generated with the two null models from the simulation data of Figure 6A. The actual
NODF (=0.46) is more than 100 standard deviations above the mean nestedness for both models.

To compute the NODF, we employed the following algorithm, which is implemented in the Community Simulator package
(in the analysis module). Let n be the number of columns, and m the number of rows in a matrix A. Let Dc be an n× n
matrix, such that (Dc)ij = 1 if the sum of column i is greater than the sum of column j, and 0 otherwise. Similarly, let Dr be
an m×m matrix such that (Dr)ij = 1 if the sum of row j is greater than the sum of row i, and zero otherwise. Let B be the
row-normalized matrix, where each row of A has been divided by the sum over the row. And let C be the column-normalized
matrix, where each column has been normalized by the sum over the column. Then the NODF of the matrix A is
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NODF = 2Tr(ATDrB) + Tr(ADcCT )
n(n− 1) +m(m− 1) [31]

where Tr represents the trace operation.

5. Numerical Evidence of a Phase Transition

A phase transition in physics is characterized by a discontinuous change in the value of an observable or its derivative as
an intensive parameter is varied, in the “thermodynamic limit” of infinite system size. In an ecological context, the analog
to system size is the number of possible resource types M , or the initial number of species S. Several recent works have
explored the analytic computations that become tractable in the M,S →∞ limit of various models, while γ ≡M/S remains
constant (when the model is resource-explicit) (5–8). Taking this limit requires several decisions about how to scale the rest of
the parameters. Our sampling scheme for the ciα and Dαβ matrices, described in Section 2, follows the canonical strategy
for studying spin glasses, where the random coupling parameters Jij are chosen such that the mean and variance are both
proportional to 1/M (9). The maintenance costs mi, on the other hand, are sampled from the same distribution regardless of
the value of M . Finally, we note that the total amount of energy w0κ0 supplied to the system is an “extensive” parameter, and
that the scaling analysis should be performed with the corresponding “intensive” parameter w0κ0/M held fixed.

S8 Fig. shows how the consumer richness scales with M for each of the three examples discussed in the main text. The first
two examples come from the resource-limited regime. The “syntrophy-limited” example has w0κ0/M = 10, l = 0.1, while the
“energy-limited” example has w0κ0/M = 0.28, l = 0.6. The third, “similarity-limited” example comes from the diverse regime,
with w0κ0/M = 10, l = 0.9. The richness appears to scale like Mα with exponent α < 1 for the resource-limited examples,
and α = 1 for the diverse example. If this scaling holds asymptotically as M → ∞, then the system exhibits a true phase
transition, with the normalized richness (richness/M) vanishing in the resource-limited regime, while remaining finite in the
diverse regime. The gray line in the right-hand panel illustrates what this would look like, with a discontinuity in the derivative
of the normalized richness as a function of l or w0κ0/M . This evidence is by no means conclusive, since we only have access to
a single decade of M values. To reach three decades of M values would require solving 40,000 coupled ODE’s involving matrices
ciα and Dαβ with size 20, 000× 20, 000. Each matrix would thus have 4× 108 entries, corresponding to 50 MB of memory
for binary entries or 800 MB of memory for floating-point entries. This computation is feasible but non-trivial, demanding
significantly more attention to how the matrix multiplications are implemented and how the matrices are passed around in
memory. We are currently working on an update to the Community Simulator package that implements the core computations
in PyTorch, which enables GPU acceleration of matrix multiplication and may allow for calculations on this scale.

For completeness, S9 Fig. shows how four other natural observables scale with system size. These are the Simpson and
Shannon diversity of the steady-state consumer and resource abundances (10). To compute these quantities, one first obtains
relative abundances fi = Ni/

∑
i
Ni and fα = Rα/

∑
α
Rα. In terms of these fractions, the Simpson diversity is

DSim =

(∑
i

f2
i

)−1

[32]

and is related to the Inverse Participation Ratio commonly analyzed in spin glass problems, while the Shannon diversity is

DSh = exp

(
−
∑
i

fi ln fi

)
, [33]

and is simply the exponential of the Shannon entropy of the distribution (where the sum is taken only over the species with
nonzero abundance). Both of these quantities are equal to 1 in the limit where a single type dominates the distribution, and
equal the total number of surviving types when all the types have the same abundance. The Simpson and Shannon diversity of
the consumers appear to saturate at a finite values in the large M limit of the resource-limited regime. When measured in
these ways, the diversity of this regime thus appears to be insensitive to the size of the regional species pool and to the number
of possible resource types, and is controlled by the energy supply, leakage fraction, and probably also the sparsity of the Dαβ
matrix.
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