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Living systems regulate many aspects of their behaviour through periodic

oscillations of molecular concentrations, which function as ‘biochemical

clocks.’ The chemical reactions that drive these clocks are intrinsically sto-

chastic at the molecular level, so that the duration of a full oscillation cycle

is subject to random fluctuations. Their success in carrying out their biologi-

cal function is thought to depend on the degree to which these fluctuations

in the cycle period can be suppressed. Biochemical oscillators also require a

constant supply of free energy in order to break detailed balance and main-

tain their cyclic dynamics. For a given free energy budget, the recently

discovered ‘thermodynamic uncertainty relation’ yields the magnitude of

period fluctuations in the most precise conceivable free-running clock. In

this paper, we show that computational models of real biochemical clocks

severely underperform this optimum, with fluctuations several orders of

magnitude larger than the theoretical minimum. We argue that this subop-

timal performance is due to the small number of internal states per molecule

in these models, combined with the high level of thermodynamic force

required to maintain the system in the oscillatory phase. We introduce a

new model with a tunable number of internal states per molecule and

confirm that it approaches the optimal precision as this number increases.
1. Introduction
Many living systems regulate their behaviour using an internal ‘clock’, synchro-

nized to the daily cycles of light and darkness. In the past 15 years, the isolation

of the key components of several bacterial circadian clocks has opened the door

to systematic and quantitative study of this phenomenon. In particular, a set of

three proteins purified from the bacterium Synechococcus elongatus are capable

of executing sustained periodic oscillations in vitro when supplied with ATP [1].

One of the proteins, KaiC, executes a cycle in a space of four possible

phosphorylation states, as illustrated in figure 1. This cycle is coupled to the

periodic association and dissociation from the other two proteins, KaiA

and KaiB.

Steady oscillations break detailed balance and must be powered by a chemi-

cal potential gradient or other free energy source. In this system and in related

experiments and simulations, it is commonly observed that the oscillator pre-

cision decreases as this thermodynamic driving force is reduced [3]. At the

same time, recent theoretical work indicates that the precision of a generic bio-

chemical clock is bounded from above by a number that also decreases with

decreasing entropy production per cycle [4–11]. This has led to speculation

that this universal bound may provide valuable information about the design

principles behind real biochemical clocks.

So far, most discussion of this connection has focused on models with cyclic

dynamics hard-wired into the dynamical rules [6,11,12]. But real biochemical

oscillators operate in a high-dimensional state space of concentration profiles,
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Figure 1. Coherent cycles in a biochemical oscillator. (a) Schematic of the KaiC biochemical oscillator. This simplified diagram shows four different internal states of
the KaiC molecule, labelled U, T, S and ST (unphosphorylated, phosphorylated on threonine, phosphorylated on serine and phosphorylated on both residues). The
molecules execute cycles around these four states in the indicated direction. They interact with each other via additional molecular components, in such a way that
molecules in state S slow down the forward reaction rate for other molecules in state U. (b) Simulated trajectory from a detailed kinetic model of the KaiC system
(adapted from [2]) with 360 interacting KaiC hexamers. The state space of this system is described by the list of copy numbers of all the molecular subspecies. Here,
we have projected the state onto a two-dimensional plane, spanned by the copy numbers of monomers in states T and S. The inset gives a magnified view of a
small portion of the plot, showing the discrete reaction steps caused by single phosphorylation and dephosphorylation events. (c) Time-evolution of the fraction fT of
monomers in state T. (d ) Histograms of the time tn required for 1200 independent sets of 360 interacting KaiC hexamers to complete n collective cycles, for n ¼ 1
through 10. (e) Variances var(tn) of the histograms as a function of n. Error bars are bootstrapped 95% confidence intervals. Black line is a linear fit, with slope D ¼
2.05+ 0.05 h2. (Online version in colour.)
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and the cyclic behaviour is an emergent, collective

phenomenon [3,6,13]. These oscillators typically exhibit a

non-equilibrium phase transition at a finite value of entropy

production per cycle. As this threshold is approached from

above, the oscillations become more noisy due to critical fluc-

tuations [13–16]. Below the threshold, the system relaxes to a

single fixed point in concentration space, with no coherent

oscillations at all. In some systems, the precision may be

still well below the theoretical bound as the system

approaches this threshold. In these cases, the precision will

never come close to the bound, for any size driving force.

As we show in §3, computational models of real chemical

oscillations typically fall into this regime, never approaching

to within an order of magnitude of the bound. Macroscopic

in vitro experiments on the KaiABC system perform even

worse, remaining many orders of magnitude below the

bound. Previous theoretical work suggests that the perform-

ance could be improved by increasing the number of

reactions per cycle at fixed entropy production and by

making the reaction rates more uniform [4,11,17]. In §2, we

elaborate on these ideas, introducing an effective number of

states per cycle and showing how the relationship of this

quantity to the location of the phase transition threshold con-

trols the minimum distance to the bound. In §4, we introduce

a new model based on these design principles, with nearly

uniform transition rates in the steady state and with a tunable

number of reactions per cycle. We show that this model
approaches the optimal precision as the number of reaction

steps per cycle grows.

2. Effective number of states and critical entropy
production control distance to thermodynamic
bound

As illustrated in figure 1a, a KaiC monomer has two phos-

phorylation sites, one on a threonine residue (T) and one on

a serine (S), giving rise to four possible phosphorylation

states [1]. The monomer also has two ATP-binding pockets,

and forms hexamers that collectively transition between two

conformational states [18,19]. All these features are important

for the dynamics of the system and they have been incorpor-

ated into a thermodynamically consistent computational

model that correctly reproduces the results of experiments per-

formed with purified components [2]. In particular, the ATP

hydrolysis rate in one of the binding pockets has been

shown to be essential for determining the period of the circa-

dian rhythms [18–20]. Although our simulations will use the

detailed model just mentioned, the simplified schematic in

figure 1 highlights only the features of the model that we

will explicitly discuss: the fact that each molecule can execute

a directed cycle among several internal states, and the fact

that the state of one molecule affects transition rates of the

others.
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Fluctuations in the time required for a simplified model of

a KaiC hexamer to traverse the reaction cycle have recently

been studied in [6]. But the biological function of this clock

demands more than precise oscillations of isolated molecules;

rather, it has evolved to generate oscillations in the concen-
trations of various chemical species. The concentrations are

global variables, which simultaneously affect processes

throughout the entire cell volume. These global oscillations

can still be described by a Markov process on a set of discrete

states, but with a very different topology from the unicyclic

network of an isolated monomer. For a well-mixed system,

each state can be labelled by a list of copy numbers of all mol-

ecules in the reaction volume as shown in figure 1b, with each

distinct internal state counted as a different kind of molecule.

In the KaiC system, molecules in one of the phosphoryl-

ation states can suppress further phosphorylation of other

molecules, by sequestering the enzyme (KaiA) required to

catalyse the phosphorylation. This mechanism can stably syn-

chronize the progress of all the molecules around the

phosphorylation cycle, slowing down the ones that happen

to run too far ahead of the rest. This is crucial for the main-

tenance of sustained oscillations in the concentration of free

KaiA and of each of the four forms of KaiC. Figure 1c
shows a sample trajectory of the concentration of one of the

KaiC phosphorylation states in the detailed computational

model mentioned above [2].

Unlike the cycles of an idealized mechanical clock, the

period t1 of these oscillations is subject to random fluctu-

ations, due to the stochastic nature of the underlying

chemical reactions. The precision can be quantified by consid-

ering an ensemble of identical reaction volumes that are

initially synchronized. The histogram of times tn for each

molecule to complete n cycles will widen as n increases and

the clocks lose their initial synchronization, as illustrated in

figure 1d. When the width exceeds the mean period T ;
kt1l, the clocks are totally desynchronized. This leads to a

natural measure of the precision of the clock in terms of the

number of coherent cycles N that take place before the

synchronization is destroyed.

To measure N in a systematic way, we first note that the

variance var(tn) ¼ Dn, for some constant of proportionality

D, as illustrated in figure 1e. This is exactly true in a renewal

process [21], such as the isolated KaiC monomer, where each

period is an independent random variable (see [11]). It

remains asymptotically valid for arbitrarily complex models

in the large n limit, as long as the correlation time is finite.

The number of cycles required for the width
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(tn)

p
of

the distribution to reach the average period T is therefore

given by

N ;
T2

D
: (2:1)

Any chemical oscillator must be powered by a detailed-

balance-breaking thermodynamic driving force that generates

a positive average rate of entropy production _S. The number

of coherent cycles is subject to a universal upper bound as a

function of _S, holding for arbitrarily complex architectures

[4–6,8–10,22]. The bound says that N is never greater than

half the entropy production per cycle DS ; _ST (setting

Boltzmann’s constant kB ¼ 1 from here on) [7],

N � DS
2
: (2:2)
The validity of this bound depends on the proper definition of

N , which in our formulation also depends on the definition of

tn. Determining tn is a subtle matter for systems of interacting

molecules. Our solution is presented in detail in appendix A,

but it always roughly corresponds to the peak-to-peak distance

in figure 1c.

As DS!1, equation (2.2) says that N is also allowed to

become arbitrarily large. But as the entropy released in the

reactions coupled to the driving force increases, detailed bal-

ance implies that the reverse reaction rates tend towards zero.

Once the reverse rates are negligible compared with the other

time scales of the problem, these reactions can be ignored,

and further changes in DS produce no effect. In any given

biochemical model, therefore, N approaches some finite

value as DS!1 (as was already noted in [3]), which

depends on the network topology and the rest of the reaction

rates. We can see this in our detailed computational model in

figure 2. For unicyclic networks in particular, where the top-

ology is a single closed cycle like the isolated KaiC monomer,

the maximum possible value for this asymptote is the

number of states N [12,23]. By analogy, we will refer to the

DS!1 limit of N for any model as the effective number

of states per cycle Neff ; limDS!1 N . For an oscillator built

from coupled cycles of internal states, such as the KaiC

system, Neff reaches its maximum value when the dynamics

constrain the oscillations to a single path through concen-

tration space, and when all reaction rates along this path

are equal. In this case, the dynamics are equivalent to a

single ring of NM states, where N is the number of internal

states per molecule and M is the number of molecules. This

upper bound on Neff can be easily computed for any model

or experiment from the basic knowledge of the component

parts.

In all five models we will analyse below, N monotoni-

cally increases as a function of DS. The existence of the

finite DS! 1 limit thus implies that N can only approach

the thermodynamic bound of equation (2.2) when DS ,

DSb ; 2Neff. But the collective oscillations of these models

also exhibit a non-equilibrium phase transition as a function

of DS, whose critical behaviour has recently been studied

[3,24]. In the thermodynamic limit, the inverse precision 1=N
diverges as DS approaches a critical value DSc from above, in

a way that depends on the architecture of the reaction network.

Below DSc, there are no collective oscillations, and the concen-

trations relax to a single fixed point. Since the oscillations cease

to exist below DSc, the bound is only relevant for DS . DSc.

Combining these two observations, we see that models with

DSb , DSc can never approach the thermodynamic bound.
3. Models of real chemical oscillators severely
underperform the bound

Cao et al. [3] recently measured N as a function of DS in com-

putational models of four representative chemical clock

architectures: activator–inhibitor, repressilator, Brusselator

and the glycolysis network. The data for all four models

produced an acceptable fit to a four-parameter phenomenolo-

gical equation, which is reproduced in appendix B along with

the parameter values obtained by Cao et al. for each model. In

figure 3, we plot these phenomenological curves and the ther-

modynamic bound of equation (2.2). We also obtained N and

DS for a detailed model of the KaiC system based on [2] as
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described in appendix C, with the parameters obtained in

that paper by extensive comparison with experimental data,

for 20 values of the ATP/ADP ratio.

The values of Neff, DSb and DSc can be estimated directly

from figure 3, by noting where each curve saturates and

where it drops to zero. Both axes are scaled by the system

size M, which equals the number of KaiC hexamers for the

KaiC model, and the number of kinases in the activator–

inhibitor model. The other three models lack a direct physical

interpretation of M, since there are no conserved molecular

species, but it still defines a generic molecular scale. For any

physically reasonable model, N is expected to be an extensive

parameter, proportional to M, as is DS. This has been con-

firmed numerically for a number of models, and appears to

break down significantly only in the immediate vicinity of

the critical point [3,15,24]. The models plotted here have

Neff/M � 2, which is reasonable for molecules that only have

a few internal states and highly non-uniform reaction rates.

But Neff/M � 2 implies that DSb/M � 4, which means

that the entropy production per molecule per cycle must be

less than 4 for the thermodynamic bound to become relevant.

This is a very small number even by biochemical standards,

equal to the entropy change from forming four hydrogen

bonds between protein residues in solution. The activator–

inhibitor, Brusselator and glycolysis models have phase

transitions at DSc/M values of 360, 100.4 and 80.5, respecti-

vely, under the parameter choices of [3]. They all exceed

DSb/M by at least an order of magnitude, guaranteeing

that the precision can never come close to the thermodynamic

bound. The KaiC model appears to have DSc/M � 1000 and

Neff/M ¼ 1.1, so that DSc exceeds DSb by more than two

orders of magnitude. The only model with DSb . DSc is the

repressilator model, where DSc/M ¼ 1.75 and DSb � 4. But,

even here, the critical fluctuations begin to severely degrade

the precision when DS is still much greater than DSb.

Estimates of N can also be extracted directly from exper-

iments, as shown by Cao et al. [3] for the in vitro
reconstitution of the KaiC system with purified components
in a macroscopic reaction volume. They analysed time-series

data from a set of experiments at different ATP/ADP ratios

and fitted their phenomenological equation to describe N as

a function of this ratio. As we show in appendix C, this fit

implies that DSc/M � 1000, consistent with our model results.

The DS!1 asymptote of the fit, however, gives Neff/M �
10211, which is astronomically small compared with the

model prediction Neff/M � 1. This surprising result reflects

the fact that the dominant sources of uncertainty in these macro-

scopic experiments are fluctuations in temperature and other

environmental perturbations, rather than the intrinsic stochasti-

city of the reaction kinetics. Since these fluctuations are

independent of the system size, their effect is inflated when

we divide by the number of hexamers M � 1014 in a 100 ml reac-

tion volume at 1 mM concentration. The only way to observe the

effect of intrinsic stochasticity in such a noisy environment is to

decrease the reaction volume. Assuming that the minimum

contribution of the external noise to N remains fixed at the

value of 500 found in the experiments, and that the intrinsic

contribution is of order Neff �M as given by the model, we

find that M ¼ 500 hexamers is the system size at which the

intrinsic fluctuations become detectable. At 1 mM concentration

of hexamers, the corresponding reaction volume is about

1 mm3, the size of a typical bacterial cell.

Because of this separation of scales, the apparent diver-

gence of 1=N at a critical value of the ATP/ADP ratio in

the experiments is probably due to the expected divergence

of susceptibility at the critical point, which makes the oscil-

lation period increasingly sensitive to environmental

fluctuations as the ATP/ADP ratio is reduced. In any case,

this analysis suggests that an important design consideration

for oscillators in living systems is robustness against external

perturbations, as recently explored in [25–27].
4. Toy model with variable number of states can
saturate the bound

The failure of all five of these models to approach the thermo-

dynamic bound raises the question of whether it is possible, in
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principle, for any chemical oscillator to simultaneously

achieve a large enough Neff/M and small enough DSc/M to

do so. In a simple unicyclic network of N states, Neff ¼ N
when all the reaction rates in the forward direction are

equal, and so one can always approach arbitrarily close to

the bound by increasing N. But a chemical oscillator cannot

have uniform rates, since the transition rates of each molecule

have to change based on the states of the others in order to

achieve collective oscillations. Furthermore, it is not known

how changing the number of internal states affects DSc/M,

and so it is not obvious whether DSc , DSb is achievable at all.

To answer this question, we devised a new model loosely

inspired by the KaiC model of figure 1, with M interacting

molecules each containing N distinct internal states. Molecules

in any one of these states suppress the transition rates for

other molecules that are further ahead in the cycle, as illus-

trated in figure 4 and described in detail in appendix E. All

internal states have the same energy, and each reaction carries

the same fraction of the total thermodynamic force.

In this highly symmetrized model, DSc/M can easily be

reduced to between 2 and 3 by choosing a sufficiently high

coupling strength, as shown in appendix E. At the same

time, Neff/M scales linearly with N and it can be made arbi-

trarily large by increasing this parameter. In figure 4, we plot

N =M versus DS/M for three different values of N and show

that the data do indeed approach the thermodynamic bound

as N increases. This extends the validity of design principles

obtained for unicyclic networks in various contexts to these

collective dynamics: the rates should be made as uniform

as possible, while the number of internal states is made as

large as possible at fixed thermodynamic driving force

[6,11,28].

5. Discussion
The thermodynamic uncertainty relation is a powerful result

with impressive universality. It has been widely assumed

that the relation should have some relevance for the evolution

of biochemical oscillators. Based on data from experiments

and extensive simulations with realistic parameters, we

have argued that these oscillators typically underperform

the bound by at least an order of magnitude. From a
thermodynamic perspective, they are free to evolve higher

precision without increasing their dissipation rate.

We have also derived a simple criterion for estimating

how closely a given oscillator can approach the thermodyn-

amic bound, in terms of an effective number of states Neff

and the entropy production per cycle DSc at the onset of oscil-

latory behaviour. For an oscillator composed of M identical

molecules with N internal states, globally coupled through

mass-action kinetics, we noted that Neff � NM, with equality

only when all the cycles are perfectly synchronized, and

when all reactions that actually occur have identical rates.

Assuming that the number of coherent periods N is mono-

tonic in the entropy production per cycle DS, the

thermodynamic bound can only be approached when

NM � Neff� DSc.

To show that this criterion can, in principle, be satisfied

by emergent oscillations of molecular concentrations, we

devised a toy model that oscillates with less than 3 kBT of

free energy per molecule per cycle and can contain an arbi-

trary number of internal states per molecule. But it is hard

to imagine a biochemically plausible mechanism for sus-

tained oscillations powered by the free energy equivalent of

three hydrogen bonds per molecule per cycle. Certainly this

could not be a phosphorylation cycle, since acquiring a phos-

phate group from ATP and releasing it into the cytosol

dissipates about 20 kBT under physiological conditions [29].

Furthermore, we noted that all the five models we analysed

have an effective number of internal states per molecule

Neff/M of around 2. This number may be constrained by a

trade-off with the complexity of the oscillator. For KaiC, the

inter-molecular coupling required for collective oscillations

is mediated by sequestration of KaiA at a particular point

in the cycle. Implementing the symmetric N-state cycle of

figure 4a in this way would require each transition to be cat-

alysed by a different molecule, and for each of these

molecules to be selectively sequestered by the state a quar-

ter-cycle behind the transition. Finally, biochemical

oscillators are subject to other performance demands that

may be more important than the number of coherent cycles

of the free-running system. In particular, an oscillator’s ability

to match its phase to an external signal (e.g. the day/night

cycle of illumination intensity) is often essential to its
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biological function, placing an independent set of constraints

on the system’s architecture [27,30]. Entrainment efficiency

has recently been shown to increase with dissipation rate in

some models even when the free-running precision has satu-

rated, providing an impetus for increasing the entropy

production per cycle beyond what is required to achieve

N ¼ Neff [31].
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dynamic driving force, projected onto their first two principal components.
A cut from the origin along the positive vertical axis provides the criterion
for cycle completion. (b) Integrated current (net number of completed
cycles) J as a function of time for the same two trajectories. The first-passage
time for a net increase n in the integrated current defines the n-cycle
completion time tn. (Online version in colour.)
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Appendix A. Measuring the stochastic period
The definition of the number of coherent cycles N depends

on a prior notion of the n-cycle completion time tn. In a uni-

cyclic transition network, this time can be straightforwardly

defined in terms of the integrated current J through an arbi-

trarily chosen transition in the network. Each time the

transition is executed in the forward direction, J increases

by 1, and each time it is executed in the reverse direction,

J decreases by 1. The n-cycle completion time tn is then natu-

rally defined as the time when the system first reaches J ¼ n,

given that it was initialized in the state immediately adjacent

to the measured transition in the positive direction [7,11,21].

For a chemical oscillator, the definition is not so clear.

One common approach is to fit the autocorrelation function

of some observable to a sine wave with exponentially decay-

ing amplitude. If the autocorrelation function exactly fits

this functional form, then N can be obtained from the

ratio of the decay time to oscillation period via a numerical

conversion factor [3]. One can also evaluate the ratio of ima-

ginary to real parts of the leading eigenvalue of the rate

matrix for the master equation of the dynamics, which

gives the same result when all the other eigenvalues are

much smaller in amplitude [6,13,16]. While this ratio is con-

jectured to be bounded by the thermodynamic driving force

powering the oscillations, it is not the approach we study

here [6]. Instead, we note that the value of N generated

by these preceding procedures only satisfies the hypotheses

of the thermodynamic uncertainty relation under the

specific conditions of a perfectly sinusoidal autocorrelation

function (see [6]). For our analysis of the KaiC model and

our new toy model, we instead use a definition of tn that

treats the oscillations in the full concentration space as one

large cycle.

Figure 5 illustrates our procedure. We started by project-

ing the state of the system from the high-dimensional

concentration space to two dimensions. We projected onto

the plane that captured the largest percentage of the total

variation in system state over a cycle, using a principal
component analysis (PCA) of a trajectory containing at

least one full cycle (using the Python package scikit-learn

[32]). In this plane, the oscillating trajectories describe a

noisy ring, as shown in figure 5a. Because the ring has a

finite width, we cannot select a single transition to count

the integrated current J. Instead, we draw a half-line

starting from the middle of the ring, representing a half-

hyperplane in the full state space, and include all the

transitions cut by this hyperplane in the current. Each time

the line is crossed in the clockwise direction, J increases

by 1, and each time it is crossed in the counterclockwise

direction, J decreases by 1. Sample traces of J(t) are plotted

in figure 5b. The n-cycle completion time tn can now be

defined as before, measuring the first-passage time for

reaching J ¼ n. These definitions fulfil the hypotheses of

the thermodynamic uncertainty relations for currents and

for first-passage times [4,7,8]. In the notation of [7,8], they

correspond to setting d(y, z) ¼ 1 for all transitions from y
to z cut by the hyperplane, and d(y, z) ¼ 0 for all other tran-

sitions. Note that the uncertainty relations are obtained in

the J! 1 limit, where initial conditions are irrelevant, but

for our numerical analysis we chose special initial conditions

that gave rapid convergence to the asymptotic form. Specifi-

cally, we employed a conditional steady-state distribution

over states adjacent to the hyperplane. This was achieved

by running the simulation longer than the relaxation time,

and then starting the counter at J ¼ 0 the next time the

hyperplane was crossed.

https://github.com/robertvsiii/kaic-analysis


Table 1. Parameters of phenomenological fits from [3].

model A B DSc/M a

activator – inhibitor 0.6 380 360 20.99

repressilator 0.4 25.9 1.75 21.1

Brusselator 0.5 846 100.4 21.0

glycolysis 0.5 151.4 80.5 21.1

Note that A controls the DS!1 asymptote and is equal to N�1
eff .

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190098

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

an
ua

ry
 2

02
4 
Appendix B. Phenomenological fits from [3]
The extensive numerical simulations performed by Cao et al. [3]

on four different models of chemical oscillators can be summar-

ized by the parameters of a phenomenological fitting function

N
M
¼ Aþ B

DS� DSc

M

� �a� ��1

, (B 1)

with four parameters A, B, DSc and a. The exponent a is

always negative, so N =M goes to zero as DS! DSc. (To con-

vert from their notation to ours, use V!M, W0! B, C! A,

Wc! DSc/M, D=T ! N�1.) The parameters for these fits are

given in the figure captions of [3] and are reproduced in table 1.
Appendix C. Analysis of experimental data
Cao et al. [3] also analyse experimental data on the KaiC

system, extracting the ratio of decay time to oscillation

period from fits to the autocorrelation function at different

values of the ATP/ADP ratio. They fit equation (B 1) to the

data, but using ln([ATP]/[ADP]) instead of DS/M, and with-

out converting the autocorrelation ratio to N or dividing by

volume.

To compare these results with the thermodynamic bound,

we first had to convert from the logarithm of the ATP/ADP

ratio to entropy production per cycle. In the text, they esti-

mate that the critical value ln([ATP]/[ADP])c ¼ 21.4

obtained from the fit corresponds to an entropy production

per ATP hydrolysis event of 10.6. Combining this with the

measurement from [20] of 16 hydrolysis events per cycle

per KaiC monomer, we find a critical entropy production

per cycle per hexamer of DSc/M � 10.6 � 16 � 6 � 1020.

Next, we had to convert the observed ratio of decay time/

period to N =M. Since the autocorrelation function was well

fitted by an exponentially decaying sinusoid, we applied the

corresponding conversion factor N ¼ 2p2(t=T), where T is

the period and t is the decay time [3, eqn (2)]. We then esti-

mated the number of hexamers M � 3 � 1013 using the KaiC

monomer concentration of 3.4 mM reported with the original

publication of the data [33,34], and the typical reaction

volume in a 96-well plate of 100 mL. With these two conver-

sions, we found that the DS!1 value of N =M was 2 � 10211.
Appendix D. Thermodynamically consistent KaiC
model
Paijmans et al. [2] have recently developed a mechanistically

explicit computational model of the KaiC oscillator. This

model is particularly interesting from the theoretical point
of view because it captures the extremely large dimensional-

ity characteristic of real biochemical systems. Each KaiC

hexamer contains six KaiC proteins, each of which contains

two nucleotide-binding sites and two possible phosphoryl-

ation sites (‘S’ and ‘T’ from figure 1). Each of these sites can

be in one of two possible states (ATP-bound/ADP-bound

or phosphorylated/unphosphorylated). Furthermore, the

whole hexamer can be in an ‘active’ or an ‘inactive’ confor-

mation. Thus each hexamer has (2 � 2 � 2 � 2)6 � 2 ¼ 225

possible internal states. As noted in the main text, the state

space for a well-mixed chemical system is the vector of

concentrations of all molecular types. For the Paijmans

et al. KaiC model, this vector therefore lives in a space of

dimension 225 ¼ 3.4 � 107.

The original implementation of this model in [2] lacked

the reverse hydrolysis reaction ADP + P ! ATP, which

never spontaneously happens in practice under physiological

conditions. To obtain full thermodynamic consistency, we

added this reaction to the model with the assistance of one

of the original authors. This required introducing a new par-

ameter DG0, the free energy change of the hydrolysis reaction

at standard concentrations. For all the simulations analysed

here, we chose DG0 and the concentration of inorganic

phosphate [Pi] such that

[Pi]0

[Pi]
e�DG0 ¼ 108: (D 1)

In other words, the entropy generated during a single

hydrolysis reaction when nucleotide concentrations are

equal ([ATP] = [ADP]) is DShyd ¼ ln 108 � 18.4.

Since the steady-state supply of free energy in this model

comes entirely from the fixed non-equilibrium concentrations

of ATP and ADP, we can measure the average rate of entropy

production _S by simply counting how many ATP molecules

are hydrolysed over the course of a long simulation, multi-

plying by DShyd, and dividing by the total time elapsed in

the simulation.

All parameters other than DG0 are described and tabu-

lated in the original publication [2], and the only parameter

altered during our simulations was the ATP/ADP ratio.

The revised C code and scripts for generating data can be

found on GitHub at https://github.com/robertvsiii/kaic-

analysis.
Appendix E. Symmetric toy model
We also developed our own abstract toy model to isolate the

operating principles of the KaiC oscillator and to check

whether the thermodynamic bound could be saturated by a

collective oscillator with the right design.

Consider a molecule with N states, as sketched in figure 6a.

Transitions are allowed from each state to two other states, such

that the network of transitions has the topology of a ring. The

rates for ‘clockwise’ and ‘counterclockwise’ transitions around

this ring are kþ ¼Nk and k2¼Nke2A/N, respectively, where

A is the cycle affinity. Under these definitions, the total entropy

produced when one ring executes a full cycle is always equal to A.

Now consider M copies of this molecule in the same

well-mixed solution with Mi copies at position i, where i
increases in the ‘clockwise’ direction from 1 to N. We can

couple their dynamics together by allowing the bare rate k
to vary around the ring. Specifically, we make the bare

https://github.com/robertvsiii/kaic-analysis
https://github.com/robertvsiii/kaic-analysis
https://github.com/robertvsiii/kaic-analysis
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Figure 6. Toy model with variable number of internal states. (a) Transition rates for a single molecule with N internal states. Multiple copies of the molecule are
coupled together kinetically, by making ki depend on the fraction of molecules fi in each state. (b) Dependence of critical affinity Ac on N for different values of the
coupling C. (Online version in colour.)
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Figure 7. Estimating N from KaiC simulations. Each panel shows the estimated variance and bootstrapped 64% confidence intervals in the n-cycle first-passage time
tn. Straight black lines are linear fits, whose slopes provide the values of D used in the computation of N for the main text figures. (Online version in colour.)
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rate ki for transitions between states i and i þ 1 depend on

the occupancy fractions fj ¼Mj/M of all N states,

ki ¼ exp �C
X

j

f j sin
2p(i� j)

N

� �0
@

1
A: (E 1)

The constant C controls the strength of the coupling, and the

rate for a uniform distribution over states is 1. This
dependence of the rates on the fi mimics the effect of KaiA

sequestration in the KaiC system. Recall that high occupancy

of the inactive conformation of KaiC causes KaiA to be

sequestered, slowing down nucleotide exchange in other

hexamers, as illustrated in figure 1. In this toy model, high

occupancy of any one state slows down transition rates

ahead of that state in the cycle, by up to a factor of e2C for

transitions a quarter-cycle ahead. Owing to the symmetry
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of our model, high occupancy of a given state also speeds up

transition rates behind that state.

The data for figure 4 were obtained with C ¼ 5, for 18

values of A from 1 to 30. Note that DS/M � A, since all M
molecules execute approximately one cycle during a given

oscillation period.

We simulated this model using a Gillespie algorithm with

the reaction rates specified above. The Python code can be

found in the GitHub repository https://github.com/robertvsiii/

kaic-analysis.

In the limit of infinite system size, the dynamics become

deterministic, and are described by the following set of N
ODEs:

dfi
dt
¼ fi�1kþi�1 þ fiþ1k�i � fi(kþi þ k�i�1), (E 2)

with kþi ¼ Nki and k�i ¼ Nkie
�A=N . These equations always

have a fixed point at the uniform state where fi ¼ (1/N ) for

all i. The linearized dynamics around the uniform state can

be written as follows:

ddfi
dt
¼ 1

N

X
j

@kþi�1

@f j
þ @k�i
@f j
� @kþi

@f j
þ @k�i�1

@f j

� �� �
df j

þ (dfi�1 � dfi)N þ (dfiþ1 � dfi)Ne�A=N

¼
X

j

Kijdf j, (E 3)

where the last line defines the matrix Kij. Oscillating solutions

are possible when Kij acquires an eigenvalue with a positive

real part, making this fixed point unstable. In figure 6b, we

plot the critical affinity Ac, where these positive real parts

first appear, as a function of the number of internal states N.

We confirmed that the dominant pair of eigenvalues contains

nonzero imaginary parts at A ¼ Ac for all points plotted, so

that the transition is a true Hopf bifurcation to an oscillatory

phase.
Note that, in the limit A! 1, N! 1, this model

becomes identical to the irreversible limit of a fully connected

driven XY model.
Appendix F. Simulations and analysis
To measure N and DS in the KaiC model and our new toy

model, we generated an ensemble of trajectories for each set

of parameters. Each ensemble of the KaiC model contained

1200 trajectories, while each toy model ensemble contained

1120 trajectories. Before collecting data, we initialized each

trajectory by running the dynamics for longer than the

empirically determined relaxation time of the system, in

order to obtain a steady-state ensemble.

After projecting each trajectory onto the first two principal

components and computing the n-cycle first-passage times as

described above, we obtained the variance in tn as a function

of n for each ensemble. We computed bootstrapped 64%

confidence intervals for the estimate of the variance using the

Python module ‘bootstrapped’, available at https://github.

com/facebookincubator/bootstrapped. These data are plotted

for all the KaiC ensembles in figure 7. The data are well fitted

by a straight line even for low n in each of the plots. We obtained

the slope D of these lines using a weighted least-squares fit, also

shown in the figure, with the weights provided by the inverse of

the bootstrapped confidence intervals.

We used these confidence intervals to obtain the boot-

strap estimate for the uncertainty in D. The size of the

confidence interval was proportional to n, as expected from

a simple multiplicative noise model where the slope D is a

random variable. The constant of proportionality yields an

estimate for the standard deviation of the distribution from

which D is sampled. We obtained this value for each data

point with another least-squares linear fit and used it to set

the size of the error bars in figures 2 and 4.
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