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abstract: Contemporary niche theory is a useful framework for
understanding how organisms interact with each other and with
their shared environment. Its graphical representation, popularized
by Tilman’s resource ratio hypothesis, facilitates analysis of the equi-
librium structure of complex dynamical models, including species
coexistence. This theory has been applied primarily to resource com-
petition since its early beginnings. Here, we integrate mutualism into
niche theory by expanding Tilman’s graphical representation to the
analysis of consumer-resource dynamics of plant-pollinator networks.
We graphically explain the qualitative phenomena previously found
by numerical simulations, including the effects on community dy-
namics of nestedness, adaptive foraging, and pollinator invasions. Our
graphical approach promotes the unification of niche and network
theories and deepens the synthesis of different types of interactions
within a consumer-resource framework.

Keywords: contemporary niche theory, ecological networks, mutualistic
interactions, pollination ecology, competition for pollination, competi-
tion for floral rewards.

Introduction

Mutualistic interactions pervade every type of ecosystem
and level of organization on Earth (Boucher et al. 1982;
Bronstein 2015). Mutualisms such as pollination (Ollerton
et al. 2011), seed dispersal (Wang and Smith 2002), coral
symbioses (Rowan 2004), and nitrogen-fixing associations
between plants and legumes, bacteria, or fungi (Horton and
Bruns 2001; van der Heijden et al. 2008) sustain the pro-
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ductivity and biodiversity of most ecosystems on the planet
and human food security (Potts et al. 2016; Ollerton 2017).
However, ecological theory onmutualisms has been scarce
and less integrated than for predation and competition,
which hinders our ability to protect, manage, and restore
mutualistic systems (Vandermeer and Boucher 1978; Bas-
compte and Jordano 2014; Bronstein 2015). This scarce
theoretical development is of particular concern because
several mutualisms (such as coral-algae and plant-pollinator
mutualisms) that play a critical role in the functioning of
ecosystems are currently under threat (Brown 1997; Rowan
2004; Goulson et al. 2015; Ollerton 2017). In particular,
niche theory (MacArthur 1969, 1970; Tilman 1982; Leibold
1995; Chase and Leibold 2003) for mutualisms has only
recently started to be developed (Peay 2016; Johnson and
Bronstein 2019). Chase and Leibold (2003) suggest that con-
temporary niche theory can be expanded to mutualism, but
such a suggestion has yet to be explored. Here, we expand
niche theory to mutualistic networks of plant-pollinator in-
teractionsby furtherdeveloping thegraphical approachpop-
ularized by Tilman (1982) to analyze a consumer-resource
dynamic model of plant-pollinator networks developed,
analyzed, and tested by Valdovinos et al. (2013, 2016, 2018).
For about 70 years, theoretical research analyzing the

population dynamics of mutualisms roughly only assumed
Lotka-Volterra-typemodels (sensuValdovinos 2019) to con-
duct their studies (e.g., Kostitzin 1934; Gause and Witt
1935; Vandermeer and Boucher 1978; Wolin and Lawlor
1984; Bascompte et al. 2006; Okuyama and Holland 2008;
Bastolla et al. 2009). Those models represent mutualistic
relationships as direct positive effects between species using
a (linear or saturating) positive term in the growth equa-
tion of each mutualist that depends on the population size
of its mutualistic partner. While this research increased
our understanding of the effects of facultative, obligate, lin-
ear, and saturating mutualisms on the long-term stability
of mutualistic systems, a more sophisticated understand-
ing of their dynamics (e.g., transients) and of phenomena
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beyond the simplistic assumptions of the Lotka-Volterra-
type models was extremely scarce. A more mechanistic
consumer-resource approach to mutualisms was recently
proposed by Holland and colleagues (Holland et al. 2005;
Holland and DeAngelis 2010) and further developed by
Valdovinos et al. (2013, 2016, 2018). This approach de-
composes the net effects assumed to be always positive by
Lotka-Volterra-type models into the biological mechanisms
producing those effects, including the gathering of resources
and exchange of services.
The key advance of the consumer-resource model devel-

oped by Valdovinos et al. (2013) is separating the dynam-
ics of the plants’ vegetative biomass from the dynamics of
the plants’ floral rewards. This separation allows (i) track-
ing the depletion of floral rewards by pollinator consump-
tion, (ii) evaluating exploitative competition among pol-
linator species consuming the floral rewards provided by
the same plant species, and (iii) incorporating the capabil-
ity of pollinators (adaptive foraging) to behaviorally in-
crease their foraging effort on the plant species in their
diet with more floral rewards available. Another advance
of this model is incorporating the dilution of conspecific
pollen carried by pollinators, which allows tracking com-
petition among plant species for the quality of pollinator
visits (see the next section).
This contribution analyzes the dynamics of plant-

pollinator networks when all of the above-mentioned bio-
logical mechanisms are considered. Specifically, we provide
analytical understanding for the results found with exten-
sive numerical simulations (Valdovinos et al. 2013, 2016,
2018; hereafter, “previous simulations”) and generalize some
of them beyond the original simulation conditions. By “ana-
lytical understanding” we refer to finding those results us-
ing a graphical approach whose geometry rigorously reflects
mathematical analysis (Tilman 1982; Koffel et al. 2016; also
provided in our appendices). Ourmethods describe Valdo-
vinos et al.’s model and our graphical approach, including
the conditions for coexistence among adaptive pollinators
sharing floral rewards and how we use projections to ana-
lyze high-dimensional systems. Our results first demonstrate
the effects of nestedness on species coexistence in networks
without adaptive foraging found by previous simulations
(Valdovinos et al. 2016). Nestedness is the tendency of gen-
eralists (species with many interactions) to interact with
both generalists and specialists (species with one or a few in-
teractions) and of specialists to interact with only general-
ists. Second, we demonstrate the effects of adaptive forag-
ing on species coexistence in nested networks found by the
same simulation study. Third, we demonstrate the impacts
of pollinator invasions on native pollinators in nested net-
works with adaptive foraging found numerically by Valdo-
vinos et al. (2018). Finally, we discuss how our approach
helps to integrate niche and network theories and deep-
ens the synthesis of different types of interactions within
a consumer-resource framework.
Methods

Dynamical Model of Plant-Pollinator Interactions

Valdovinos et al. (2013) model the population dynamics
of each plant and pollinator species of the network as well
as the dynamics of floral rewards and pollinators’ forag-
ing preferences (see table 1 for definitions of variables
and parameters). Four functions define these dynamics.
The functionVij(pi, aj) p aijtijajpi represents the visitation
rate of animal species j to plant species i and connects the
dynamics of plants, animals, rewards, and foraging prefer-
ences. An increase in visits increases plant growth rate via
pollination and animal growth rate via rewards consump-
tion but decreases rewards availability. The function

jij(pk) p
aijtijpiP
k∈Pjakjtkjpk

represents the fraction of j’s visits that successfully pol-
linate plant i and accounts for the dilution of plant i’s pol-
len when j visits other plant species. Pollinators visiting
many different plant species carry more diluted pollen
(low-quality visits) than the pollen carried by pollinators
visiting only one plant species (high-quality visits). The
function gi(pk) p gi(12

P
l(i∈Pulpl 2 wipi) represents the

germination rate of the seeds produced by the successful
pollination events, where gi is the maximum fraction of i
Table 1: Model variables and parameters
Symbol
 Meaning
Variables:

pi
 Plant abundance per unit area ([ind.]/m2)

aj
 Animal (pollinator) abundance per unit area

([ind.]/m2)

Ri
 Reward abundance per unit area (g/m2)

aij
 Foraging preference (dimensionless)
Parameters:

gi
 Maximum germination rate ([ind.]/[seeds])

ul
 Plant interspecific competition (m2/[ind.])

wi
 Plant intraspecific competition (m2/[ind.])

eij
 Expected number of seeds per pollination event

([seeds]/[visits])

tij
 Visitation efficiency ([visits]m2/[ind.]2 year)

m
P=A
i
 Mortality rates (1/year)
cij
 Conversion efficiency of rewards into animal
abundance ([ind.]/g)
bij
 Per-visit rewards extraction (1/[visits])

bi
 Per-plant reward production (g/[ind.]year)

fi
 Self-limitation of reward production (1/year)

Gj
 Adaptation rate (dimensionless)
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recruits subjected to both interspecific (ul) and intraspecific
(wi) competition. Finally, the function

f ij(Ri=pi) p bij
Ri

pi

represents the rewards consumption by animal j in each
of its visits to plant i. These functions capturing the above
mentioned biological processes lead to the following
equations:

dpi
dt

p gi(pk)
zfflffl}|fflffl{
germination

rate X
j∈Ai

eijjij(pk)Vij(pi, aj)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{seed production

2 mP
i pi

z}|{mortality

,
ð1Þ

daj

dt
p

X
i∈Pj

cij Vij(pi, aj)f ij(Ri=pi)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{rewards consumption

2 mA
j aj

z}|{mortality

, ð2Þ

dRi

dt
p pi

�
bi 2 fi

Ri

pi

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
per‐plant

rewards production

2
X
j∈Ai

Vij(pi, aj)f ij(Ri=pi)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{rewards consumption

, ð3Þ

daij

dt
p

Gjaij

aj

�
cij Vs

ij(pi, aj)f ij(Ri=pi)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{rewards consumption as specialist

2
X
k∈Pj

ckj Vkj(pk, aj)f kj(Rk=pk)
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{actual rewards consumption �

, ð4Þ

where Vs
ij p tijajpi is the visitation rate of animal species j

to plant species i under a pure specialist strategy aij p 1.
That is, the preference of animal j for plant i increases
when the rewards that could be extracted from plant spe-
cies i by application of full foraging effort to that plant
(aij p 1) exceed the rewards currently obtained from all
plants in j’s diet. The preference decreases in the opposite
case, where the rewards obtainable by exclusive foraging
on plant i are lower than the current rewards uptake level.
Note that the terms in equation (4) have been rearranged
from previous publications of this model to emphasize
the coupling of the four equations through the visitation
rates Vij. We use parentheses that include the variables
determining each of the functions in the equations to dis-
tinguish functions from parameters, but in the text those
parentheses are excluded for improved readability. The vis-
itation rate Vij and the rewards extracted per visit fij can
also be modeled by a saturating function following Holl-
ing’s type II functional response (Holling 1959), as discussed
in appendix D (apps. A–D are available online).
The sums in equations (1)–(4) are taken over the sets

of Ai and Pj of pollinator species that are capable of vis-
iting plant i and plant species that can be visited by pol-
linator j, respectively. Those sets are defined by the net-
work structure taken as model input. Finally, the dynamic
preferences of equation (4) model adaptive foraging. These
preferences are restricted by

P
k∈Pjakj p 1. When adap-

tive foraging is not considered, foraging preferences are
fixed to

aij p
1
Pj

, ð5Þ

where Pj here represents the number of plant species vis-
ited by pollinator species j.
Niche Theory for Plant-Pollinator Dynamics

Niche is a central concept in ecology, significantly clarified
and refined over the past 50 years (MacArthur 1969, 1970;
Tilman 1982; Leibold 1995; Chase and Leibold 2003). We
analyze the niche of plant and pollinator species within
their mutualistic interactions, assuming all of their other
niche variables (e.g., soil nutrients, water, temperature, nest-
ing sites) constant and sufficient for supporting their pop-
ulations. There are two reasonable choices for the defini-
tion of environment space in plant-pollinator systems. First,
on short timescales (i.e., within a flowering season; fig. 1a,
“Rewards Space”), the plant populations can be regarded
as constant and the relevant environmental factors are the
floral rewards. Second, on longer timescales (i.e., across
several flowering seasons; fig. 1b, “Plant Space”), plant
populations represent the axes for the environment space,
letting the reward levels implicitly determine the value of
each plant population as a food source. Table 2 summarizes
both representations in terms of the model parameters. This
section explains both representations to provide a broader
picture of niche theory applied to plant-pollinator systems,
but we obtain our results in rewards space.
The requirement niche of each pollinator species j

( j p 1, 2, ::: ,A) in either rewards or plant space can be
encoded by a zero net growth isocline (ZNGI; Tilman
1982; Leibold 1995). The ZNGI is a hypersurface that
separates the environmental states where the growth rate
is positive from the states where it is negative. Environ-
mental states along the ZNGI support animal reproduc-
tion rates that exactly balance mortality rates, leading to
constant population sizes. Adaptive foraging allows the
ZNGIs in rewards space to dynamically rotate in the di-
rection of the most abundant rewards. The ZNGIs are
dynamic in plant space (even in the absence of adaptive
foraging) because the contribution each plant makes to the
animal growth rate depends on the current reward level.
The impact niche of each pollinator species is repre-

sented by an impact vector, which specifies the magnitude
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and direction of the environmental change induced by an
average individual of the species (Tilman 1982; Leibold
1995). In rewards space, the impact of a pollinator species
is the rate at which it depletes the floral rewards, just as in
traditional models of resource competition, but its angle
takes on a new importance in connection with the visit
quality jij. A nearly perpendicular impact vector to a given
rewards axis means that only a small fraction of the pol-
linator’s visits are allocated to the corresponding plant,
and most of the pollen carried by this pollinator belongs
to other plant species. A plant species will eventually be-
come extinct if all of its visits have such low quality (see
below). Note that the exact mapping from the angle to the
visit quality depends on the foraging strategy, the number
of plant species, and plant abundances (see fig. D2;
figs. D1–D4 are available online). In plant space, the pos-
itive effects of plant-pollinator mutualisms are directly
visible in the impact vectors pointing to larger plant pop-
ulation sizes (as opposed to pointing to smaller popula-
tion sizes in the traditional models of resource competi-
tion) and represent the number of successful pollination
events caused by each pollinator species.
Table 2: Mapping elements of the model to niche theory concepts
Niche concept
 Description
 Mathematical expression
Rewards space:
 X

ZNGI
 Reproduction/mortality balance
 i∈Pj

cij(Vij=aj)f ij p mA
j

2(Vij/aj)fij
Impact vector
 Per capita rewards consumption

Supply point
 Rewards equilibrium without animals
 bipi/fi
Plant space:
 X

ZNGI
 Reproduction/mortality balance
 i∈Pj

cij(Vij=aj)f ij p mA
j

gieijjij(Vij/aj)
Impact vector
 Plant production

Supply point
 Plant equilibrium without animals
 0
Note: ZNGI p zero net growth isocline.
Figure 1: Niche theory for mutualism. a, Representation of plant-pollinator system as a standard consumer-resource type model for
timescales on which plant populations are approximately constant. Impact vectors and zero net growth isoclines (ZNGIs) are shown for
two pollinator species (blue and orange) competing for the rewards of two plant species. Adaptive foraging causes the ZNGIs and impact
vectors to rotate in the direction of the most abundant resource, as discussed in detail in appendix A. The angle between the impact vector
and a given rewards axis affects the pollinator’s visit quality for the corresponding plant, with zero degrees corresponding to jij p 1 (highest
visit quality) and 90 degrees corresponding to jij p 0 (lowest visit quality). See figure D2 for a detailed discussion of the angle-quality re-
lationship. b, Representation in terms of plant populations for analysis of longer timescales, where the mutualism becomes visible. The sup-
ply point is now located at the origin, and the pollinator impacts are necessary to sustain nonzero plant abundance. The location of the
ZNGIs depends on the current nutritional value of each plant species, which is lower for species whose floral rewards are more depleted.
The impact vectors (see table 2) depend on both the visit quality and the per capita visit frequency of each pollinator species (jij and Vij=aj of
eq. [1], respectively) and encode each pollinator’s contribution to the total number of seedlings in the next generation.
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The environment also has its intrinsic dynamics, repre-
sented by a supply vector (Tilman 1982; Chase and Leibold
2003). In rewards space, the supply vector points toward
the supply point, where the rewards reach equilibrium in
the absence of pollinators (as in traditional models of re-
source competition). However, the supply point itself is
determined by the plant populations, which depend on
pollination activity for their long-term survival. Extinction
of a plant species (e.g., because of low visit quality) causes
the supply point to drop to zero along the corresponding
rewards axis, leading to a cascade of ecological reorgani-
zation and a new equilibrium (see below). In plant space,
the equilibrium point in the absence of pollinators is always
at the origin, since all plants require pollination services to
avoid extinction.
These three quantities (ZNGIs, impact vectors, and sup-

ply point) define the conditions for stable coexistence. Pol-
linator populations reach equilibrium when all of the cor-
responding ZNGIs pass through the current environmental
state. In addition, the combined impact of all pollinator
species must exactly cancel the supply for the environ-
ment to remain in this state. This total impact is found by
multiplying each impact vector by the corresponding pop-
ulation density and then summing the results. Whenever
the supply point lies within the cone formed by extending
all of the impact vectors backward (fig. 1), a set of popu-
lation densities can be found with a total impact equal and
opposite to the supply. Each potentially stable set of co-
existing species is thus represented by an intersection of
ZNGIs, and coexistence is achieved whenever the supply
point falls within the corresponding coexistence cone.
Conditions for Adaptive Pollinator
Coexistence on Shared Rewards

The full equilibrium of the model also requires that adap-
tive foraging dynamics have reached a steady state. This re-
quirement is satisfied with additional restrictions on the
parameter values, which we derive by setting the pollinator
growth rate daj=dt p 0 in equation (2) and substituting
into the adaptive foraging equation (4). We find the fol-
lowing equilibrium condition:

0 p
Gjaij

aj

(cijVs
ijf ij 2 mA

j ): ð6Þ

The term in parentheses is what the growth rate daj=dt
for animal species j would be if it were a specialist on plant
species i, with Vij p Vs

ij and aij p 1. Equation (6) re-
quires that this term vanish at equilibrium for all plant-
animal pairs i, j, where aij ( 0. Substituting in the expres-
sions for Vij and fij from the first section of “Methods,” we
find the equilibrium rewards abundance R*

i :

R*
i p

mA
j

cijtijbij
: ð7Þ

This result imposes a strict constraint on the animal mor-
tality rates mA

j and the reward uptake efficiencies cijtijbij,
requiring that both terms vary in the same way from spe-
cies to species for all animals that share rewards from the
same plant species i (i.e., for all animals with aij ( 0).
Pacciani-Mori et al. (2020) suggests that this required cor-
relation betweenmortality rates and ingestion rates is con-
sistent with allometric scaling relationships (Yodzis and
Innes 1992). However, it is still unknown whether this re-
lationship holds at the species level. Hereafter, we assume
that the pollinators’ ZNGIs intersect, acknowledging that
the mechanism for coexistence is not present in our model.
Appendix A shows that R*

i is the rotation center for
the ZNGIs, and therefore the shared R*

i remains the point
of intersection for all of the ZNGIs over the entire course
of adaptive foraging dynamics.
Using Projections to Analyze
High-Dimensional Ecosystems

The graphical analysis described above is easily visual-
ized for environmental spaces with two dimensions. Plant-
pollinator networks, however, contain tens to hundreds of
plant species. In this full space, the ZNGIs are no longer
lines but hypersurfaces of dimension P2 1 (fig. 2b, where
P is the number of plant species in the network). The in-
tersections among these hypersurfaces determine the points
of potential coexistence. We extend our graphical approach
to many dimensions and analyze the conditions for co-
existence among the species whose ZNGI hypersurfaces
intersect by using projections of the coexistence cone onto
two-dimensional slices through the full environmental
space.
We consider the two-dimensional slice where two of

the rewards (or plant) abundances are allowed to vary (gray
plane in fig. 2b), while all other abundances are held fixed
at the values where the intersection occurs. We then cre-
ate a diagram like those of figure 1 by drawing the lines
where the ZNGIs intersect this slice and projecting the im-
pact vectors and supply point onto this slice (i.e., taking
the component parallel to the slice’s surface). The species
do not coexist if the projection of the supply point lies out-
side the projection of the coexistence cone (e.g., fig. 2a–
2c) because this can happen only when the supply point
lies outside the full coexistence cone. But the supply point
may still lie outside the cone (along one of the directions
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that has been projected out) even if the projected sup-
ply point lies inside theprojected coexistence cone. Toguar-
antee coexistence, one must examine all possible two-
dimensional projections and ensure that the supply point
is inside the cone in every projection (fig. D3).
Results

Effects of Nestedness on Network Dynamics
without Adaptive Foraging

Most plant-pollinator networks exhibit a nested struc-
ture (definition and citations are provided in the intro-
duction). The implications of nestedness for the stability
of these networks have been a topic of study for over a
decade (Bastolla et al. 2009; Allesina and Tang 2012; re-
viewed in Valdovinos 2019). Valdovinos et al. (2016) pro-
vide a more mechanistic framework to evaluate the effects
of nestedness on the dynamics of plant-pollinator net-
works. This section analytically confirms their numerical
results when pollinators are fixed foragers (eq. [5]) and pro-
vides criteria for plant survival not found by previous work
(see the next section for adaptive foragers).
We perform our graphical analysis using two-dimensional

slices through the full rewards space of a nested three-
plant/three-pollinator-species network (fig. 2a), which has
sufficient complexity to illustrate all of the relevant projec-
tions for arbitrarily large networks. Figure 2b shows the
Figure 2: Effects of nestedness without adaptive foraging. a, Nested network with three pollinator (polygons) and three plant (circles) species.
Shaded bars indicate rewards abundance at the equilibrium point in c and e, with differences among species exaggerated for clarity. The red
X indicates extinction at equilibrium. b, Three-dimensional zero net growth isoclines (ZNGIs), impact vectors, and supply point of this net-
work. c, ZNGIs and impact vectors projected onto the rewards 1/rewards 3 plane (gray transparent plane in b). Pollinator species 2 and 3
have the same projections onto this plane because both visit plant species 1 and none visit plant species 3 (see other projections in fig. D3).
The black circle indicates rewards at equilibrium. Specialist pollinators 2 and 3 become extinct because the supply point (black X) falls in the
orange zone. d, Specialist plant species 3 becomes extinct when the quality of visits it receives is lower than the threshold jc of f. e, Supply
point drops to zero along the rewards 3 axis when plant species 3 becomes extinct, which results in the extinction of the generalist pollina-
tor species 1. f, Dependence of specialist plant abundance pi on visit quality jij, using equation (C5). The minimal visit quality jc required
for plant persistence is indicated by the dashed line. Parameters values are taken from Valdovinos et al. (2013), with tij p 1, eij p 0:8,
mP
i p 0:008, cij p 0:2, mA

j p 0:004, bij p 0:4, gi p 0:4, wi p 1:2, bi p 0:2, and fij p 0:04. Plant abundance is measured in units of the plant’s
carrying capacity 1=wi, so that the maximum possible value equals 1.
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three-dimensional rewards space, with the three colored
planes being the ZNGIs of the three pollinator species (de-
rived from table 2). The coexistence cone is the three-sided
solid bounded by planes connecting the backward exten-
sions of the impact vectors (colored lines). We project this
cone onto the gray transparent plane composed by re-
wards 1 and 3. This projection is depicted in figure 2c,
which shows the asymmetric shape of the coexistence cone,
bounded on one side by the impact vectors of the special-
ist pollinators (green and blue vectors parallel to rewards
axis 1) and on the other by the impact vector of the gen-
eralist pollinator species (diagonal orange vector). This
asymmetric shape is characteristic of nested networks since
nestedness increases the diet overlap between specialist and
generalist species. This is one of only three possible cone
shapes in a two-dimensional projection (see fig. D4) re-
gardless of the full environment dimension.
Valdovinos et al. (2016) show that increasing nested-

ness increases the extinction of specialist species in net-
works without adaptive foraging. Our graphical approach
explains this result by demonstrating that the asymmet-
ric coexistence cone found most frequently in nested net-
works favors the extinction of specialist pollinators. To show
this, we note that obtaining a supply point in the orange
region of figure 2c (where both specialist pollinator spe-
cies become extinct) requires only that the supply level
b3p3=f3 of rewards 3 is greater than the supply of rewards 1.
This happens half of the time when the plant parameters
are randomly chosen (as they were in the previous simula-
tions). But for the supply point to reach the blue and green
region, where one or both of the specialist pollinator spe-
cies persist, the supply of rewards 3 must drop below the
ZNGI intersection. This is a much more stringent condi-
tion, and in practice it is satisfied only when the specialist
plant (here, plant species 3) becomes extinct (fig. 2e).
To elucidate the conditions for plant extinction, we dis-

tinguish two drivers of species elimination: competitive ex-
clusion by other plant species for resources other than pol-
lination and failure to receive sufficient pollination. Plant
competition is modeled with a Lotka-Volterra-type com-
petition matrix, and standard techniques from coexistence
theory can be employed to study this aspect (see app. B).
We focus on the second driver by assuming that intraspe-
cific competition is much stronger than interspecific com-
petition, which effectively gives each plant species its own
niche. This leaves pollination—particularly visit quality
(jij; see “Methods”)—as the sole determinant of plant sur-
vival. Specialist plants receive the lowest quality of visits in
nested networks because they are visited only by generalist
pollinators that carry diluted pollen from many other spe-
cies. We find the criteria for plant survival by calculating
the plant population size pi as a function of the visit qual-
ity jij for a perfectly specialist plant (visited by only one
pollinator species). We obtained an exact analytic expres-
sion for this relationship (eq. [C5]), which is depicted in
figure 2f. This relationship shows that each plant species
remains near its maximum abundance (1=wi) as long as
the visit quality they receive is above a threshold jc, but it
suddenly drops to zero when the visit quality drops below
this threshold.
Effects of Adaptive Foraging

Adaptive foraging (eq. [4]) rotates the ZNGIs and im-
pact vectors in the direction of the more plentiful floral
rewards (see “Methods”). This section explains the con-
sequences of this rotation for species coexistence and pro-
vides analytical understanding for the result found by
previous simulations showing that adaptive foraging in-
creases the species persistence of nested networks (Valdo-
vinos et al. 2016).
Figure 3 shows how adaptive foraging changes the re-

sult illustrated in figure 2a–2c. The supply point lies just
outside the coexistence cone, and the equilibrium state with
fixed foraging preferences gives plant species 3 a higher
equilibrium concentration of floral rewards. This means
that the generalist pollinators will begin to focus their for-
aging efforts on plant species 3, resulting in a rotation of
the ZNGI and impact vector to become more like those
pollinators specialized on plant species 3 (i.e., a horizontal
line and vertical arrow in this visualization). This rotation
opens up the coexistence cone until it engulfs the supply
point. The resource abundances then relax to the coexis-
tence point (R*

1,R*
2,R*

3), where all plants are equally good
food sources, and adaptation stops. This process allows
the coexistence of all pollinator species.
Adaptive foraging increases coexistence among plant

species in nested networks by causing pollinator species to
focus their foraging efforts on more specialist plant species
(fig. 3a), increasing the visit quality they receive (see the
angle of the orange impact vector becoming more parallel
to the rewards 3 axis in the sequence of fig. 3b and 3c). This
rotation in ZNGIs in turn decreases the visit quality that
the generalist plants receive from the generalist pollinators
(see the angle of the orange impact vector becoming more
perpendicular to the rewards 1 axis in the sequence of
fig. 3b and 3c). The generalist plant species will still persist
despite this reduction in visit quality by generalist polli-
nators because they still receive perfect visit quality from
specialist pollinators that visit only them (e.g., pollinator
species 3 in fig. 3a) and that cannot shift their foraging
effort to other plant species. Overly connected networks
(i.e., with many more interactions than the ones found in
empirical networks) lack these perfect specialists, and there-
fore the average quality of visits received by generalist plant
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species drops below the threshold jc (fig. 2c) and they be-
come extinct, as observed in previous simulations.
Impact of Pollinator Invasions on Native Species

This final section analyzes the consequences of pollinator
invasions on species coexistence in networks with adap-
tive foraging and provides analytical understanding for the
results found numerically by Valdovinos et al. (2018). We
assume that exotic species come from a different regional
pool, with consumption and mortality rates not following
the strict relationship imposed on the native species by
equation (7). This results in the exotic’s ZNGI not passing
through the natives’ common ZNGI intersection (fig. 4b,
4d ) but instead intersecting different native ZNGIs at dif-
ferent points. The resulting proliferation of possible co-
existence points and cones impede the analysis of high-
dimensional systems using the method of projections
employed above. Therefore, we focus on a network sim-
ilar to that in previous sections but with only two (instead
of three) plant species.
Exotic pollinators will invade the network whenever the

native coexistence point R*
i falls on the positive growth rate

side of the exotic’s ZNGI, regardless of the number of plant
species the exotic visits. This corresponds to the case of
efficient foragers reported in previous simulations (i.e.,
with higher foraging efficiency than natives), which were
the only exotic pollinators invading the networks studied
by Valdovinos et al. (2018). The impact of the invader on
native species will depend on how the exotic’s ZNGI alters
the coexistence points, which in turn depends on the net-
work structure.
A network structure with native pollinator species vis-
iting only plant species visited by the efficient invader
(fig. 4a) has three possible outcomes depending on the po-
sition of the supply point: (i) native specialists become ex-
tinct when the supply point falls in the invader-generalist
coexistence cone (cone 1 in fig. 4b), (ii) generalists become
extinct when the supply point falls in the invader-specialist
coexistence cone (cone 2 in fig. 4b), and (iii) all native pol-
linator species become extinct when the supply point falls
in the gap between the two coexistence cones (dark region
in fig. 4b). This third outcome (illustrated in fig. 4a) hap-
pens when all plant species have similar properties (as as-
sumed in previous simulations), which results in a supply
point near the diagonal of the rewards space.
A network structure where native pollinators visit plant

species not visited by the invader results in a coexistence
between the invader and the natives that have access to
those alternative resources. For example, the pollinator spe-
cies 1 coexists with the invader if the invader only interacts
with plant species 1. This results in plant species 2 having
higher rewards than species 1 at the new coexistence point,
which makes pollinator species 1 shift its foraging effort to
plant species 2 until it becomes a pure specialist (fig. 4c).
Conversely, all three pollinator species coexist as special-
ists on plant species 1 if the invader interacts only with
plant species 2.
This analysis suggests that native pollinators only vis-

iting plants visited by the invader will typically be driven
extinct in larger networks because the supply point will
most likely fall in the gap between the high-dimensional
coexistence cones. But if a pollinator species interacts with
at least one plant species not visited by the invader, it will
Figure 3: Effects of adaptive foraging. a, Adding adaptive foraging to the nested network allows the generalist pollinators to focus their
foraging effort on the plant species with more abundant floral rewards (thick line connecting pollinator 1 to plant 3). b, Adaptive foraging
causes the zero net growth isocline of the generalist pollinator species and its impact vector to rotate counterclockwise (toward the most
plentiful rewards 3). The black circle represents the equilibrium state of figure 2c, with more available rewards in plant species 3 than in
species 1. c, The rotation of the impact vector expands the coexistence cone, making it engulf the supply point, so that all three species
coexist in the new equilibrium (black circle). This rotation also reduces the angle between the impact vector and the rewards 3 axis, increas-
ing the quality of visits by the generalist pollinators to these plants while decreasing their quality of visits to the other plant species.



Niche Theory for Pollination Networks 401
survive and transfer all of its foraging effort to these plants.
This agrees with previous simulations.
Discussion

Previous studies of species coexistence in plant-pollinator
systems mainly consisted of work developing conceptual
(e.g., Palmer et al. 2003; Mitchell et al. 2009) and math-
ematical (e.g., Levin and Anderson 1970; De Mazancourt
and Schwartz 2010; Johnson and Bronstein 2019) frameworks
for analyzing conditions at which species can coexist as
well as reviews of empirical cases showing competition
among plant species for pollination services (e.g., Mitchell
et al. 2009; Morales and Traveset 2009) and among pol-
linator species for floral rewards (e.g., Palmer et al. 2003).
Contemporary niche theory allows a synthesis of all of
this information in one framework and makes quantita-
tive predictions about community dynamics, including spe-
cies coexistence. We expand this theory by incorporating
plant-pollinator systems. Our contributions consist of con-
sidering short- and long-term dynamics of plant-pollinator
interactions, depicting the requirement and impact niches
of pollinators, and demonstrating the effect of adaptive for-
aging and network structure on those niches. We applied
these advances to the understanding of pollinator invasions.
We next explain each of these contributions and contex-
tualize them with previous literature.
Explicit Consideration of Two Timescales:
Rewards and Plant Spaces

Explicit consideration of timescales has been recently high-
lighted as paramount for analyzing ecological systems, es-
pecially when evaluating management strategies (Callicott
2002; Hastings 2016) where the time frame of action deter-
mines the ecological outcome. This is particularly the case
in plant-pollinator systems, whose dynamics can be dis-
tinctively divided into at least two timescales: the short-
term dynamics occurring within a flowering season and the
long-term dynamics occurring across flowering seasons.We
Figure 4: Pollinator invasions. a, The brown polygon represents an exotic pollinator species with higher visit efficiency than natives, visiting
the two plant species. b, If plant species have similar abundances (as in previous simulations), the supply point falls in the gap between the
two coexistence cones, and only the invader survives at equilibrium. c, The invader does not interact with plant species 2. d, The supply point
now falls inside the coexistence cone 1 and the invader coexist with pollinator species 1. Adaptive foraging drives the native species to be-
come a pure specialist on plant species 2 (which had more rewards). This results in plant species 2 receiving better visits and in pollinator
species 1 reducing its population size. The relative abundances can be estimated from the position of the supply point within the cone. For
example, only a small contribution will be required from a pollinator species to achieve perfect cancellation of the supply if one of the other
impact vectors points almost directly away from the supply point. The invader’s impact vector points in slightly different directions at the
two coexistence points. This results from the factor of Ri contained in the fij term of the impact vector as given in table 2, which biases the
vector in the direction of the more abundant reward. Plant extinctions do not occur under these conditions.
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developed our graphical approach for these short- and
long-term dynamics by representing the pollinators’ niches
in rewards and plant spaces, respectively. Rewards space
assumes approximately constant plant populations, analyz-
ing the dynamics occurring during a flowering seasonwhere
plants do not reproduce but produce floral rewards that are
depleted by pollinators in a matter of hours or days. Plant
space represents the longer timescale at which the quality
and quantity of pollinator visits impact plant populations
represented on the axes.
The other work we know of that expands contemporary

niche theory to mutualisms uses a more classic consumer-
resource space (Peay 2016), where niche axes represent re-
sources in the soil used by plant species indistinctly of the
timescale. That work shows how the plants’ ZNGIs change
when the mycorrhizal mutualism is added, but the axes
are still resources in the soil, not mutualists. In our work,
by contrast, the axes are the abundances of the mutualistic
partners themselves (plant space) or the rewards produced
by them (rewards space).
Depicting the Pollinators’ Requirement
and Impact Niches

Analysis of the requirement niches of species sharing
resources has long been used to study species coexistence
(MacArthur 1970; Tilman 1982; Leibold 1995; Chase and
Leibold 2003). Only recently has such analysis been applied
to mutualistic systems. Johnson and Bronstein (2019) ap-
plied Tilman’s resource ratio theory to two pollinator spe-
cies competing for the rewards provided by one plant spe-
cies and when an abiotic resource is added. Our results
expand this work by extending to networks with larger
numbers of plant and pollinator species, where nestedness
and adaptive foraging become relevant properties. How-
ever, we do not explicitly consider resources or abiotic lim-
itations other than floral rewards that species might require
to survive (e.g., nesting sites, water), which represents an
important avenue for future work.
We study the pollinators’ impact niche corresponding

to the change induced on plant and reward abundances.
In plant space, the mutualism is directly visible in the im-
pacts, which represent the number of successful pollination
events caused by each pollinator, and the impact vectors
point in the direction of larger plant population sizes. This
space shows a main difference between resource competi-
tion in classic consumer-resource and mutualistic systems.
Consumers in classic consumer-resource systems can only
affect each other negatively through depleting their shared
resource, while consumers in mutualistic systems can also
benefit each other through benefiting their shared mutual-
istic partner. In rewards space, the impact of a pollinator
species is simply the rate at which it depletes the floral re-
wards, just as in a classic model of resource competition.
An important difference, however, is the representation
of the visit quality of a particular pollinator species to a
particular plant species in terms of the angle between
its impact vector and the rewards axis corresponding to the
plant species. The analysis of this representation advances
another subject that has captured the attention of ecologists
for over a century—plant competition for pollination (re-
viewed in Mitchell et al. 2009). This large body of research
has shown that plant species sharing the same pollinator
species potentially compete not only for the pollinators’
quantity of visits but also for their quality of visits. Our ap-
proach provides means for analyzing plant competition for
quantity and quality of visits quantitatively and therefore
complements previous empirical and conceptual approaches.
Finally, the strict constraint on pollinator parameter

values given by equation (7) highlights the intrinsic incom-
pleteness of any model (including ours) that focuses ex-
clusively on plant-pollinator interactions, which are only
a subset of the full ecosystem (Hale et al. 2020). Questions
on how many pollinator species can coexist or how to pre-
vent competitive exclusion (Gause and Witt 1935; Levin
1970; McGehee and Armstrong 1977) present interest-
ing avenues for further study in models that consider the
broader ecological and evolutionary context of plant-
pollinator interactions.
Effects of Network Structure and Adaptive
Foraging on Species Coexistence

The network structure of plant-pollinator systems influ-
ences community dynamics and species coexistence by
determining who interacts with whom and which mutu-
alistic partners are shared between any two given species.
We analyzed the effects of nestedness on species persistence
in these networks by depicting the dynamics occurring in
systems where generalist and specialist pollinators share
the floral rewards of generalist plants while specialist plants
are visited only by generalist pollinators. We provided an-
alytical understanding to results found by previous sim-
ulations by showing how nestedness with its increased
niche overlap produces an asymmetric coexistence cone
that causes the extinction of specialist species.
We demonstrated that adaptive foraging rotates the

pollinators’ ZNGIs and impact vectors toward the most
abundant rewards, promoting pollinator coexistence in
nested networks through niche partitioning and plant co-
existence through the increased visit quality to special-
ist plants. We anticipate that our graphical representa-
tion of adaptive foraging can be applied to other types of
consumer-resource systems, such as food webs, where the
effects of adaptive foraging have been extensively studied
theoretically (reviewed in Valdovinos et al. 2010). For
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example, Kondoh (2003) shows how adaptive foraging
causes many species to coexist in complex food webs. Key
to this result is the “fluctuating short-term selection on tro-
phic links,” which effectively reduces the realized food web
connectance. That is, adaptive foraging allows the rare prey
torecoverbymakingtheconsumerseffectivelyspecializeon
the most abundant prey, which results in the rare prey be-
coming more abundant and the abundant prey becoming
more rare, causing the adaptive consumers to switch their
preferences again. This is similar to our result of general-
ist pollinators becoming effectively specialized on special-
ist plants with initially higher reward abundance, but it is
also different because our plant-pollinator model does not
exhibit fluctuations in foraging preferences. This differ-
ence is explained by the inherent timescales of rewards and
prey dynamics, where the rewards are produced and con-
sumed at the same short timescale while the production of
new prey are lagged behind the consumption by predators.
We anticipate that our graphical approach will deepen the
conceptual unification of theory on mutualistic systems
and theory on food webs by providing analytical under-
standing of species coexistence in consumer-resource sys-
tems and incorporating the effects of adaptive foraging
and network structure, both critical for the dynamics of those
two types of consumer-resource systems.

Conclusion

Our graphical approach promotes the unification of niche
and network theories by incorporating network structure
and adaptive foraging into the graphical representation of
species’ niches. This approach also deepens the synthe-
sis of mutualistic and exploitative interactions within a
consumer-resource framework by including both in the
graphical representation of pollinators’ niches. This research
may promote further development of ecological theory on
mutualisms, which is crucial for answering fundamental
questions and informing conservation efforts.
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