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Analysis of Adaptive Foraging Equation

In this appendix, we show that the adaptive foraging dynamics given in equation (4) cause the zero net growth isocline
(ZNGI) of a pollinator species j to rotate about a point in rewards space, whose coordinates are given by the minimum
reward abundance R; required for the pollinator to survive under a pure specialist strategy focused on plant species i.

First of all, setting da;/dt = 0 in equation (2), with o; = 1 and o; = 0 for all & # i, we obtain the equilibrium
condition under the pure specialist strategy:

0 = ¢yrybyaR; — pl'a;. (A1)
Solving for the reward abundance, we obtain
A
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R, = ——. A2
y CijTijb[j ( )

This is the same as equation (7), but we have added an index j to indicate that this point can in general be different for each
pollinator species, depending on the choice of parameters.

Next, we confirm that the adaptive foraging dynamics of equation (4) preserve the constraint ) _,cp,a; = 1 imposed in
the initial conditions, by computing
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Thus, if ) Jiep,o; = 1 at any point in time, the derivative vanishes, and it remains equal to this value for all times.
Finally, we show that this constraint on the sum of «; guarantees that the point R}, defined above always lies on the
ZNGI, that is, that da;/dt always vanishes there:

da; .
7; = Zcifai/Ti/’bifa/’Ri/’ — W (AS5)
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Conditions for Coexistence among Plant Species

Unlike the population growth rate of pollinators that entirely depends on rewards abundances, the population growth rate
of plants in the Valdovinos et al. model considers other factors (e.g., space or nutrient limitation) that are captured

by a generic Lotka-Volterra-type function of plant competition composed of intraspecific (or self-limitation) and
interspecific competition coefficients (w; and u,, respectively) that affect plant recruitment rate (y; in eq. [D3]) and are
independent of the mutualistic interaction with pollinators. The standard conditions for stable coexistence in Lotka-
Volterra models therefore represent a necessary condition for plant coexistence. Whether a plant species actually persists
at equilibrium also depends on whether it receives sufficient pollination services, which will be discussed in appendix C
below.

To simplify our analysis, in the main text we focus on the case of low interspecific competition (i.e., u;, << w;), which
is also the regime where all the relevant numerical simulations were performed (Valdovinos et al. 2013, 2016, 2018), so
we can safely approximate p; = 1/w, under conditions of adequate pollination.

To go beyond this regime and obtain necessary coexistence conditions with nonnegligible interspecific competition, we
must examine the stability of the fixed points of the plant dynamics given by equation (1). To keep the problem
tractable, we will treat o, as fixed parameters and assume that a; quickly relax to the equilibrium value g; (p;) corresponding
to the current plant abundances. Under these assumptions, the stability of the plant equilibrium depends on the
eigenvalues of the Jacobian matrix

d dp; Iy

d
Ju = — = Vi+ i 505V — 1 Oy
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evaluated at the equilibrium point p;. If all eigenvalues have negative real parts, then the equilibrium is stable.

To further streamline the calculation, we will assume that w;, = w for all i and ©;, = u for all /. This allows us to state the
results in terms of the relative strength of interspecific (1) versus intraspecific (w) competition. Evaluating the derivatives,
we then find

Ji = (g,Ze,, l,) [(W — u)by + u] + 'y,Ze,,o Q T,/pl o -|— <’Y,Z€,/O' 0T — (’) .- (B2)
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The final term in parentheses is equal to d logp,/dt for p; > 0, so it must vanish whenever all of the plants coexist. To
determine the sign of the eigenvalues for the remaining portion, it is convenient to define the diagonal matrix D with
components

Dy = 6ikgizet'j0ij Vij (B3)
JEA;

and a matrix A with components
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We can now write the Jacobian J in matrix notation as

J=-D(w—uw)l+U-—A], (B5)

where I is the identity matrix and U is a matrix with elements U; = u.
In the low mortality limit 47 — 0, the steady state occurs at y; — 0, so A — 0. In this case, the eigenvalues of
[(w — u)I + U] can be evaluated exactly, with one eigenvalue equal to

AMM=w+ (P - Du (B6)

and the rest equal to

AT =w—u (B7)

For any symmetric matrix M with all negative eigenvalues (a so-called stable matrix), the product DM with any diagonal
matrix D with all positive entries also has all negative eigenvalues. This property of maintaining stability under
multiplication by a positive diagonal matrix D is known as D-stability, and it has been proven that all sign-symmetric
stable matrices are also D-stable (Hershkowitz and Keller 2003). Applying this to the case at hand, we see that the
eigenvalues of J are all negative if and only if A~ > 0. Thus, we recover for arbitrary numbers of species the classic result
of modern coexistence theory for two species: stable coexistence requires that intraspecific competition (w) is stronger
than interspecific competition (z; Chesson 2000).

To determine the impact of nonzero A, we focus on the case where all pollinators are pure specialists, with identical
parameters. Then A is proportional to the identity matrix:

A2 LTI Dutwlp'da’

: L (BS)

a dp

where p; = p" and a; = a” for all i and j, since all of the parameters are the same. Since the pollinators feed on the
rewards produced by the plants, da’/dp is always positive. The smallest eigenvalue of [(w — u)I + U — A] becomes

A =w—u, (B9)
where the effective intraspecific competition coefficient w is

P Tl A
o=@ Dutwip da (B10)

a ap

which is always less than w. This means that the low-mortality criterion w > u remains a necessary condition for
coexistence. We conjecture that this remains true for arbitrary pollinator parameters and connectivity because there is
no obvious reason why competition between different species of pollinators should selectively provide additional
intraspecific feedback for the plants.
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Minimum Visit Quality for Specialist Plants

We consider the equilibrium condition for a specialist plant of species i, which is visited by just one pollinator species J,
obtained from equation (1) by substituting in for v, and V; using the linear model described in the first section of
“Methods.” We set u; = 0, as discussed in the main text and in appendix B, in order to obtain the minimal visit quality
required for survival, under ideal conditions with no direct competition from other plant species. We find

_ dp;

0
dt

= gl — wp)e;oymioa; — pi. (C1)

The pollinator population density @, can be found by solving the equilibrium condition for the rewards, obtained from
equation (3):
_dR,

0= E = Bp: — O:R, — by aR;. (CZ)

To solve this, we recall that in the equilibrium state of interest, where the adaptive foraging is also at equilibrium, the
reward abundances are equal to R;, as defined in equation (7). Thus, we arrive at

a4 = % (C3)
Substituting into equation (C1), we have
0 =g - szi)eiiaif&p%ﬁ —ul (C4)
This is a quadratic equation in p,, which can be solved to obtain
p,:%[l—%(l—d,)(l— 1—m>], (C3)
where
4 = SRw (C6)

is the fraction of floral rewards that are lost to dilution when the plant population is at its carrying capacity 1/w; and
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is the number of seedlings produced per plant lifetime under optimal conditions, where there are no other plant species
nearby to contaminate the pollen and the field is kept clear of all competing plants. Specifically, gie; is the number of
individual seedlings produced per pollinator visit, (1 — d,)8;/(ufw;) is the harvested rewards mass per unit area over the
plant’s lifetime (i.e., over the average lifetime of an individual plant in the corresponding stochastic version of this model),
and b;R; is the rewards mass density harvested per visit.
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Saturating Functional Responses

In the version of the model presented in the main text, which was employed in all of the previous simulations, the
pollinator growth rates are linear functions of rewards abundances. In reality, both the quantity of rewards extracted per
visit f; and the visit frequency V; are likely to saturate at high rewards levels. All of the qualitative results obtained
in the main text apply to these more realistic models as well. In this appendix, we provide mathematical expressions for
these two types of saturation, along with the expressions corresponding to equation (7) that specify the point R in
rewards space, where adaptive foraging reaches a nontrivial steady state.

The original publication presenting the model (Valdovinos et al. 2013) contained a discussion of saturating rewards
extraction, with each pollinator capable of obtaining a finite quantity b;** of rewards per visit, following Holling’s type II
growth kinetics (Holling 1959):

R;
Sy = b

— (D1)

Setting da,;/dt = 0 and oy; = 6, in equation (2) and substituting in with this formula for f;, we find that the equilibrium
rewards level R for the specialist strategy satisfies:

4 KiPi + R,*,

/ D2
’j P R;- ( )

c;Tbi™ =
This equation reveals a set of two sufficient conditions to give all pollinator species j the same R}; (as required for adaptive
foraging to admit of a steady state with all these species sharing rewards from species i): (i) the mass-specific rewards
uptake rates ¢, ;65" for different j must scale linearly with the mortality rates p and (ii) x, must be the same for all ;.
In addition to the finite capacity of a pollinator to extract rewards on each visit, it is reasonable to assume that there
is a maximum number of visits that an animal can make per unit time. Using the same type II kinetics, we obtain
the following expression for the total visitation rate of pollinator species j on plant species i:

V. =a Ty
i = a; .
1+ D mhohupe + D cwpay

(D3)

Here, hy; is the handling time for pollinator species j foraging on plant species k, and w; quantifies the magnitude of direct
interference between pollinators. Direct interference significantly complicates the geometric interpretation, so we will
set wy = 0 here. If the saturation of visit frequency is the only relevant nonlinearity and the rewards uptake per

visit is still linear in R,, then the zero net growth isoclines (ZNGIs) remain linear. When both kinds of saturation are
present, the specialist equilibrium point Rj is defined by

T — 4 (Kf/pi + R;)(l + Zkaiak/hk/pk)
CyTiDjj K iR :

(D4)

*
i

Giving all species the same set of R} requires two more assumptions beyond what was required for saturating rewards
extraction alone: (i) the handling time /4,, must be inversely proportional to the visitation efficiency 7,; for all pollinator
species j visiting a given plant species k and (ii) all of the plant population densities (for nonextinct plants) must be
the same. Both of these are trivially satisfied under conditions similar to the simulations discussed in the main text, where
the only differences between species come from the topology of the interaction network and all other parameters

are species independent.
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Figure D1 shows that the ZNGIs are no longer linear under saturating rewards extraction but that the graphical
arguments from the main text still hold. The key point is that when all parameters are species independent (except for
interaction network topology), the initial impact vectors are required by symmetry to be perpendicular to the ZNGIs
and adaptive foraging tends to rotate them away from the rewards axes corresponding to generalist plants, just as in
the linear model. Since these are the two essential features necessary for recovering the simulation results, we expect
that the same phenomena will be observed even in the presence of saturation.
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Figure D1: Saturating growth laws. a, Scaling the maximum mass-specific rewards uptake rate c¢;7;b;" with the pollinator mortality
rate ' ensures that all species have the same minimum viable rewards level R} under a specialist strategy on each plant species i. As
in the linear model, this implies that all zero net growth isoclines (ZNGIs) cross at this point and rotate about it during adaptive for-
aging. b, ZNGls, impact vectors, supply vector, and coexistence cone for the nested network of figure 2, with saturating rewards uptake

following equation (D1). Gray arrows indicate the direction of rotation of the ZNGI and coexistence cone boundary under adaptive
foraging.
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Figure D2: Relation between angle and quality. Left, visit quality o; = o;7;p:/D iep,ctTyi Versus cosine of the angle 0 between the
impact vector of pollinator species j and (negative) rewards axis i (cosf = o;7;b;/ Ekepj(akjrlgb]g)z). All plants are assumed to have
identical abundances p;, all foraging efficiencies 7, and per-visit rewards extraction b; are equal, and the foraging effort not expended on
plant 7 is equally distributed over all other plant species. Each line represents a different value of the total number of plant species P.
Right, same as previous panel but for P = 2 and different values of the ratio p,/p, of the two plant abundances. Note that o, = 0

always corresponds to cos @ = 0, that o; = 1 always corresponds to cosf = 1, and that between these two extremes the relationship
is always monotonic.
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Figure D3: Additional projections. Shown are projections of the three-plant, three-pollinator system of fig. 2 onto the other two planes:
a, rewards 1/rewards 2; b, rewards 2/rewards 3. Note that the blue species is not visible in the second projection because the zero net
growth isocline is parallel to the projection plane and the impact vector is perpendicular to the plane.

—
Q
~
—
()
~

Rewards 2
Rewards 2

Rewards 2

Rewards 1 Rewards 1 Rewards 1

Figure D4: Complete set of possible projections without adaptive foraging. There are only three distinct two-dimensional projections of
the coexistence cone that are possible in the absence of adaptive foraging. The shape of the projected cone depends only on the exis-

tence of pollinators that service one of the two plants in the projection but not the other. a, One plant has a specialist pollinator. b, Both
plants have specialist pollinators. ¢, Neither plant has a specialist pollinator.





